For the IceCube Collaboration

Finn Mayhew, Shiqi Yu

Michigan State University

DIS2023, March 28th, 2023

Presentation Outline

- Introduction
- Reconstruction: Convolutional neural networks
- Atmospheric ν_{μ} disappearance measurements

Neutrino Oscillation

- Neutrinos come in
 - mass states v_1, v_2, v_3 eigenstates of the Hamiltonian
 - flavor states v_e , v_u , v_{τ} eigenstates of the weak interaction

Neutrino Oscillation

$$P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta) \, \sin^2\!\left(1.27 \, rac{\Delta m^2 L}{E} \, rac{[\mathrm{eV}^2] \, [\mathrm{km}]}{[\mathrm{GeV}]}
ight)$$
 (two-flavor approximation)

Neutrinos travel as their mass states and interact as their flavor states
 ⇒ probability of a neutrino being detected as a given flavor state
 oscillates over the neutrino's flight

Neutrino Oscillation

$$P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta) \, \sin^2\!\left(1.27 \, rac{\Delta m^2 L}{E} \, rac{[\mathrm{eV}^2] \, [\mathrm{km}]}{[\mathrm{GeV}]}
ight)$$
 (two-flavor approximation)

- Reconstruct energy, baseline, and **flavor** of neutrinos from detector data
- This information constrains the oscillation parameters $\sin^2\theta_{23}$ and Δm_{32}^2 (the ones atmospheric experiments are most sensitive to)

Red = v_{r} , Blue = v_{ll} , Black = v_{el}

IceCube Neutrino Observatory

- 1 km³ neutrino detector deep under South Pole ice;
- 5160 digital optical modules (DOMs) detect Cherenkov photons emitted during neutrino interactions;
- DOMs record pulse charges & times;
- DeepCore: denser configured sub-detector, can observe GeV-scale neutrinos.

v_{μ} Disappearance with IceCube

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline
 (L), and largest values.

$\nu_{_{\prime\prime}}$ Disappearance with IceCube

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline
 (L), and largest values.
- Neutrino distance of travel (L) calculated using arrival direction (zenith).

v_{μ} Disappearance with IceCube

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline
 (L), and largest values.
- Neutrino distance of travel (L) calculated using arrival direction (zenith).

 v_u survival probability (two flavor approx.):

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27\Delta m_{32}^2 L}{E})$$

v_" Disappearance with IceCube

 Low-energy (< 100 GeV) reconstruction is critical to oscillation analysis

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline
 (L), and largest values.
- Neutrino distance of travel (L) calculated using arrival direction (zenith).

 v_u survival probability (two flavor approx.):

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27\Delta m_{32}^2 L}{E})$$

Reconstruction

Machine learning techniques reconstruct:

- Energy
- Direction (L)
- PID: v_{μ} CC vs. others
- Interaction vertex
- Atm. muon classifier

Analysis binning

Selections

Convolutional Neural Networks (CNNs)

- Only use DeepCore & nearby IceCube strings;
- Five CNNs trained on balanced MC samples: optimized for different variables.

5 summarized variables per DOM:

- sum of charges
- time of first (last) pulse
- charge weighted mean (std.) of times of pulses

DOI: 10.22323/1.395.1053

Reconstruction Performance

- Nominal MC with analysis cuts and flux, xsec, and oscillation weights applied;
- Comparable resolution to current (likelihood-based) method;
- ~3,000 times faster in runtime: big advantage for full MC production of atmospheric neutrino datasets.

CNN-based method: DOI: 10.22323/1.395.1053

Likelihood-based method:

DOI: 10.48550/arXiv.2203.02303

Preliminary Analysis Sample

- Data taken over 3,390 days between 2012-2021;
- Selections are applied to eliminate primary backgrounds (noise and atm. muon): shared by all the oscillation analyses
- After final analysis cuts:
 - Total of 150,257 neutrino candidates;
 - High signal $(v_{\mu} \text{ CC})$ and low background rates ($\sim 0.6\%$):

3D Binned Analysis Sample

Measure 3D distortions in reconstructed [energy, cos(zenith), PID]:

- PID discriminates v_u CC vs. neutrino bkgs;
 - o 27,352 track-like; 22,963 cascade-like candidates.

3D Binned Analysis Sample

Measure 3D distortions in reconstructed [energy, cos(zenith), PID]:

 θ_{23} : +5° vs. Nominal

- PID discriminates v_u CC vs. neutrino bkgs;
- Robust against systematic uncertainties.

DIS2023 | Finn Mayhew, Shiqi Yu

Oscillation Results

- Consistent with the previous IceCube results.
- Big updates on MC models and calibration since last publication (DeepCore 3-year).
- Compared to DeepCore 8-year result: New reconstruction, including mixed- and low-pid bins into analysis.

v_{μ} Disappearance Analysis

- Overall good data/MC agreement;
- Most outstanding oscillation effect is in high-pid bin.

Oscillation Results

- The new result is compatible and complementary with the existing measurements:
 - IceCube uses very different sample and faces different systematics from the other experiments.
- Big updates on MC models and calibration since last publications (DeepCore 3-year).

Oscillation Results

• The new result is compatible and complementary with the existing measurements.

Conclusion

- First-time using the highest-statistic (9.3yr) DeepCore atmospheric neutrino dataset for oscillation measurements:
 - Machine learning tools (including CNNs) are used for multi-purpose reconstruction.
- Compatible, complementary results with the existing measurements:
 - Different sample and facing different systematics;
 - Competitive constraint on Δm_{32}^2 .
- A lot of room for future improvements!
 - MC models, detector calibration, reconstruction...
- More oscillation results using this new sample on the way!
 - Neutrino mass ordering, non-standard interactions...

Stay tuned!

Backup

Future

The Upgrade detector:

- More densely instrumented strings in the center
 - Better energy resolution!
- DOM: multiple PMT designs
 - Great for calibration studies!
- Target deploying 2024/25

New sensitivity of Upgrade expected in summer!

Training Samples

- Balanced MC samples;
- Energy, direction, interaction vertex are trained on v_{μ} CC events (signal).

Performance: Speed

	Second per file (~3k events)	Time for full sample assuming 1000 cores
CNN on GPU	21	~ 13 minutes
CNN on CPU	45	~ 7.5 hours
Current Likelihood-based method (CPU only)	120,000	~ 46 days

- CNN runtime improvement: ~3,000 times faster;
 - CNNs are able to process in parallelize with clusters → can be even faster!
- Big advantage: large production of full Monte Carlo simulations ~O(10⁸).

Testing Samples

- Nominal MC sample with flux, xsec, and oscillation weights applied;
- Testing on signal (v_{μ} CC) and major background (v_{e} CC);
- Baseline: current reconstruction method (likelihood-based)

Performance: Vertex

- Selecting events starting near DeepCore;
- Comparable purities in selected v_{μ} CC samples.

Performance: Muon and PID Classifiers

- Comparable performance to the current methods:
 - Similar AUC values.
- Hard to identify track from cascades at low energy → less DOMs see photons.

Training Samples

Energy: nDOM >= 7

Muon: nDOM >= 4; 5-200 GeV

Muon, PID, Vertex: nhits >= 8 hit 5-200 GeV

Zenith: full containment cut on true vertexes, 5-300GeV

Performance: Direction

- Direction bias flat against true energy;
- Comparable to current method;
- Better resolution for v_{μ} CC (signal);
- High energy (>100 GeV) neutrinos leaving DeepCore
 - Need containment cut: interaction vertex reconstruction.

Performance: Energy

- Flat median against true neutrino energy;
 - CNN has better resolution at low energy (majority of sample)
- Comparable performance to current method at higher energy and in background;

Reconstruction Performance

- Flat median against true neutrino energy and zenith;
- CNN has comparable resolution to current method, and better at low energy (majority of sample)

Performance: Zenith

- Flat median against true direction;
- Comparable to current method in both signal and background.

Performance: Zenith (Contained, 5-300 GeV Sample)

Systematic Effect: Neutrino Flux Model

Neutrino flux spectral index variation has different signature to expected oscillation signal

Fit for spectral index among other model systematics

$$N_{\sigma} = rac{N_{
m pulled} - N_{
m nominal}}{\sqrt{N_{
m nominal}}}$$

Flux model systematic: Neutrino flux spectral index changed by $+1\sigma$

Systematic Uncertainty Consideration

- Flux uncertainty
 - Pion & Kaon production uncertainties

