Future Top Quark Pole Mass Improvements from PDF Updates

Jason Gombas-Salazar

Reinhard Schwienhorst Jarrett Fein Sara Sawford

Introduction

- Two broad definitions of top quark mass:
 - Top quark pole mass (our subject of study here)
 - Measured from comparing experimental and theoretical cross-sections, both inclusive and differential
 - Monte-Carlo top quark mass
 - Measured from reconstructing the top quark from its decay products
- We perform a phenomenological study to see if we can reduce the top pole mass uncertainty with future colliders and by how much
- This study was part of the US community study on the future of particle physics (Snowmass 2021)

PDF Significance to Top Pole Mass Measurements

- Largest uncertainty in theory calculations is from parton distribution functions (PDFs)
 - About 5% uncertainty on the total cross-section
 - $\circ\quad$ Gluon PDF at large x and large scale μ
- Goal: study the impact the PDF uncetainty on future top pole mass measurements

Future Colliders

- LHC Run3
 - 13.6 TeV
 - Goal is to collect 300 fb⁻¹
- HL-LHC: High Luminosity Large Hadron Collider
 - 14 TeV
 - Goal is to collect 3,000 fb⁻¹
- FCC: Future Circular Collider (or any 100 TeV hadron collider)
 - o 100 km tunnel
 - First tuned to electron collider
 - Then 100 TeV hadron collider

Outline of Our Study

- Generate events using Madgraph at NLO
- Calculate χ^2 with differential top quark mass distributions and "original" PDF uncertainties
- Calculate new PDF uncertainties on the mass distributions by updating with new pseudodata that is expected from future colliders
- Recalculate χ^2 with differential top quark mass distributions and "updated" PDF uncertainties
- Comparing χ^2 curves from "original" and "updated" PDF errors shows how the PDF component of the top quark pole mass can be improved with future collider data

Top Mass Measurements in $pp o t \bar{t}$

- Two studies are done on different top quark processes
- Only truth level study
 - o Don't decay tops out of Madgraph
- Calculated χ^2 using these mass distributions and their PDF uncertainties

$$\chi^2 = \sum_{i=0}^n rac{(O_i-E_i)^2}{\sigma_i^2}$$

Top Mass Measurements in $pp \to t\bar{t}j$

• For top pair production plus 1 jet, we found that a more sensitive variable was this ρ

$$\rho = \frac{2*170}{m_{t\bar{t}i}}$$

A few more details of our study

- Two parameters are varied: beam energy and top quark mass
 - COM Energies of 8 TeV, 13 TeV, 13.6 TeV, 14 TeV, and 100 TeV
- PDFs are updated with ePump, using the Hessian update method
 - This method relies on the Hessian approximation which is only valid for updates that result in small deviations from the global best fit
- Pseudodata for ePump is set to nominal theory
 - Assumed 1% uncorrelated systematic error for pseudodata (expected experimental precision)
- This is done for top masses in the nominal region (172.5 GeV), χ^2 curve shows top mass measurement improvement

χ^2 before PDF updates

 χ^2 for $t\bar{t}$ study

χ^2 for $t\bar{t}j$ study

Pseudo-data Histograms used in PDF Update

Gluon PDF Error Band Constraints

(Left) Reduction of PDF error bands from the η_t in $t\bar{t}$ events (Right) Reduction of PDF error bands from the p_Z in $t\bar{t}j$ events

Updated χ^2 with Top Rapidity in $t\bar{t}$ Events

Top mass uncertainty due to PDF reduced by:

- 13% for 14 TeV, 3,000 fb⁻¹
- 14% for 100 TeV, 20,000 fb⁻¹

Updated χ^2 with p_Z in $t\bar{t}j$ Events

Top mass uncertainty due to PDF reduced by:

- 17% for 14 TeV, 3,000 fb⁻¹
- 20% for 100 TeV, 20,000 fb⁻¹

Summary

- With the HL-LHC, there is an opportunity to improve the PDF component of the top quark pole mass uncertainty with measurements such as η_t in $t\bar{t}$ and p_Z in $t\bar{t}j$
- Improvements on the PDF component of the top quark pole mass uncertainty can be expected to be reduced by about ~13% up to ~17% with the upcoming HL-LHC with auxiliary measurements
- We also looked at other variables such as η and p_Z of t and $t\bar{t}$ with and without detector cuts. We saw similar improvements with these variables

Thank you!

Backup

Current Top Quark Pole Masses

χ^2 Curves from $t\bar{t}$ mass

17

χ^2 Curves from $ho^{tar t j}$

re Updated with $p_Z^{tar{t}j}$

