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Background

Pythia overview [arXiv:2203.11601]

Pythia is a general-purpose
event generator.

▶ GPEGs tell us what our
theoretical models predict
at the end of the day.

▶ Can make future
predictions, which may
guide e.g. detector
design.

▶ Includes Angantyr
module for heavy ions.

(figure by S. Chakraborty and P. Skands)
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Background

Motivation
Overarching motivation: we want a full minimum-bias photon-ion simulation

Direct

�A
γ
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�A q̄
q
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q̄

▶ The direct part is straightforward to model in Angantyr: the photon simply
scatters off a single nucleon. At high Q2, this corresponds to DIS.

▶ The anomalous part is more complicated. The q and q̄ can interact with different
nucleons in A.

▶ The VMD part can be described as a hA interaction, analogous to pA. This is the
component with highest multiplicity, due to MPIs and multiple subcollisions.
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Background

Objective

Current objective: To implement hadron-ion interactions for generic hadrons.

▶ Primary use case is for the VMD part of the photon wave function.
▶ This feature also has other applications, such as modelling hadronic cascades.

▶ Pythia has already been used in CORSIKA 8 air shower [arXiv:2303.02792].
▶ NA61/SHINE has provided data on π−C collisions [arXiv:2209.10561].

▶ One technical point is that in interactions like e−A → e−(γA), the γA interaction
is not at a fixed energy. We need to change the beam energies on an
event-by-event basis, depending on the photon flux.

Hadron-proton interactions already exist in Pythia [arXiv:2108.03481]. In this talk, I
will present this framework, then introduce the changes we have made to extend this
to Angantyr. Finally we look at some results, comparing to HERA and LHC data.
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Modelling

From pp to hp

Going from pp to hp
requires two changes:

1. Modified cross
sections.

2. Parton distribution
functions (PDFs) for
the new hadrons.
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Modelling

Total and partial cross sections

Several models for total cross sections are available in Pythia. The most generic is the
Donnachie-Landshoff model, which is available for most hadron–nucleon combinations:

σAB(s) = XABsϵ + Y ABs−η

Elastic and diffractive cross sections are based on parameterizations by SaS, e.g.

dσ =
g3PβAPβ

2
BP

16π

dM2
X

M2
X

(eBXB tdt)FSD(M
2
X , s)

▶ If βBP(t) = βBP exp(bBt), then with suitable normalization, XAB = βAP(0)βBP(0)

▶ BXB = 2bB + 2α′
P log(s/M

2
X ) with b = 1.4 for mesons and 2.3 for baryons

▶ FSD is a fudge factor (out of scope for this talk)
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Modelling

Parton distribution functions

PDFs determine the contents of a hadron, and are central to modelling MPIs. For
protons, detailed PDFs based on global fits exist, the Pythia default being NNPDF2.3
QCD+QED LO (with αS = 0.130).

For other species, very little data exists, and we base our valence distributions on an
ansatz by Glück, Reya et al.:

f (x ,Q2
0 = 0.26 GeV2) = Nxa(1− x)b(1 + A

√
x + Bx)

and evolve to higher scales using the QCDNUM program. The parameters are fixed by
flavour- and momentum sum relations, and some heuristic guesses. In particular,
heavier valence quarks should have larger x , as they must all have similar velocities in
order for the hadron to stay intact.
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Modelling

Parton distribution functions
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▶ ⟨x⟩ is higher for heavy valence content (solid lines), and correspondingly lower for
light content (dashed lines).
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Modelling

Hadron–proton collisions in Pythia [arXiv:2108.03481]

The following plots are for meson–proton nondiffractive events at 6 TeV

▶ Hadrons with heavier valence content generally lead to harder interactions and
more activity

▶ Effect is particularly pronounced for J/ψ and Υ, which have no light valence.
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Modelling

From hp to hA

Now, let us look at how this fits in with Angantyr.

▶ Nuclear geometry is given by Glauber model.
Each subcollision is assigned a type
(absorptive, diffractive, elastic) based on the
impact parameter bNN .

▶ Perform absorptive subcollisions with smallest
bNN first. Generate events to parton level.

▶ Secondary absorptive collisions are modelled
like diffractive interactions.

▶ Combine partons from all subevents, then do
color reconnection, string interactions, string
hadronization, etc.

arXiv:1806.10820

Once we have hp and Angantyr, no further physics modelling is needed.
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Modelling

Hadron-ion collisions in Angantyr
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▶ Heavier quark content implies fewer subcollisions with more activity per collision.

▶ In hA, there is one or zero absorptive interactions, giving a bimodal spectrum.

▶ Note that ϕ peak is not between ρ0 and J/ψ.

Marius Utheim Pythia, Angantyr, and the path towards a general-purpose electron-ion MC generator



11/15

Results

Outline

Background

Modelling

Results

Summary and outlook

Marius Utheim Pythia, Angantyr, and the path towards a general-purpose electron-ion MC generator



12/15

Results

γp at HERA [arXiv:2106.12377]
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▶ pref⊥,0 is the regularization scale for MPI evolution. Larger value means fewer MPIs.
The variation gives a sense of the model uncertainty.

▶ The shift due to changing pref⊥,0 is larger on average in the full photoproduction
than in just the VMD component.
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Results

ATLAS γ + Pb multiplicities [arXiv:2101.10771]
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▶ Our analysis is not exactly the same as in the experimental paper.
▶ Qualitatively speaking, the shift from γp to γPb is consistent with data.
▶ In γp, the VMD component has less average multiplicity than in full

photoproduction. This could be the other way around for γPb.
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Results

ATLAS eta spectrum [arXiv:2101.10771]
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▶ The ratios between γp and γPb is similar for our simulation and in data.

▶ VMD components have a slight bias in the photon-going direction.
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Summary and outlook

Summary and outlook

In this work, we have implemented generic hadron-ion collisions in Pythia.

▶ With this new feature, we can study photon-induced processes with VMD
photons. Our long-term goal is a minimum-bias γA simulation.

▶ We have validated our approach against HERA data. The shift from VMD-p to
VMD-Pb is qualitatively in line with ATLAS UPC data.

▶ We have also implemented variable energies in Angantyr.

Next steps...

▶ For the direct part of the photon wavefunction, modelling is straightforward, but
the implementation is missing. The anomalous part is a little more complicated.

▶ This work also has other applications, such as hadronic showers and π−C
scattering experiments.

Code expected to be released in Pythia 8.310.
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Photon flux [arXiv:1901.05261]
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Photon wavefunction details [arXiv:hep-ph/9403393]
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pRef⊥,0 variations
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