Machine learning based jet & event classification with applications to hadron structure & spin physics

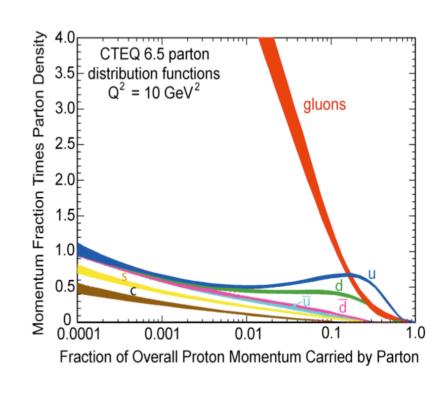
Felix Ringer

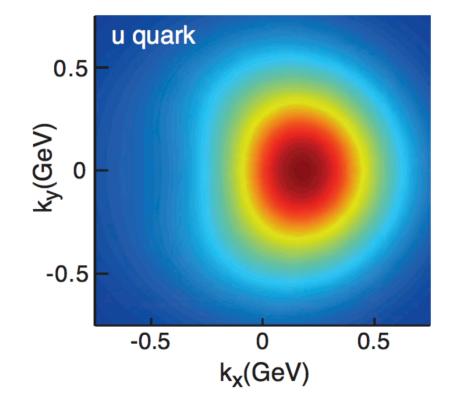
In collaboration with K. Lee, J. Mulligan, M. Ploskon, F. Yuan, arXiv:2210.06450 (JHEP)

• Transverse single spin asymmetries

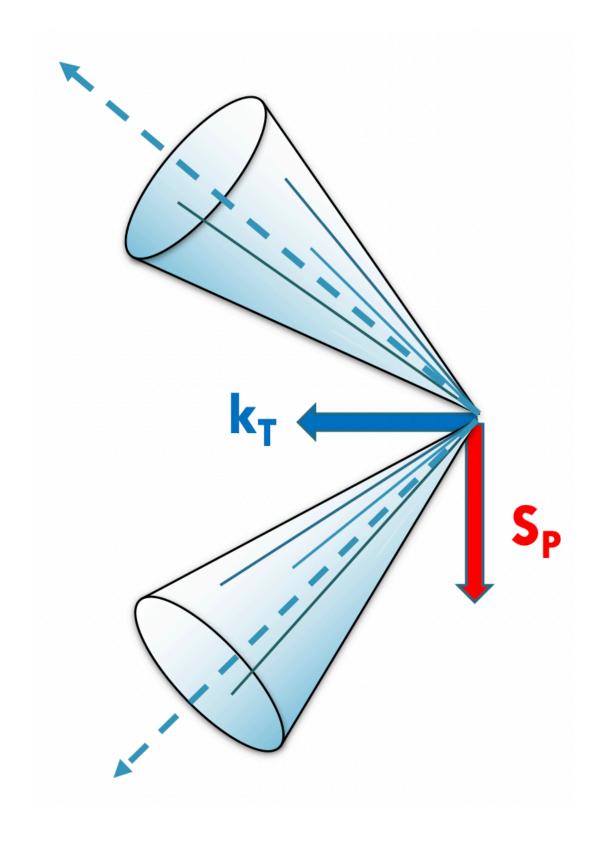
$$A_{UT} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

- E.g. back-to-back di-jets at RHIC
- Similar measurements at the EIC





Fatemi EINN `19, Liu DNP `19 see also Kang et al., Yuan et al.



• Transverse single spin asymmetries

$$A_{UT} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

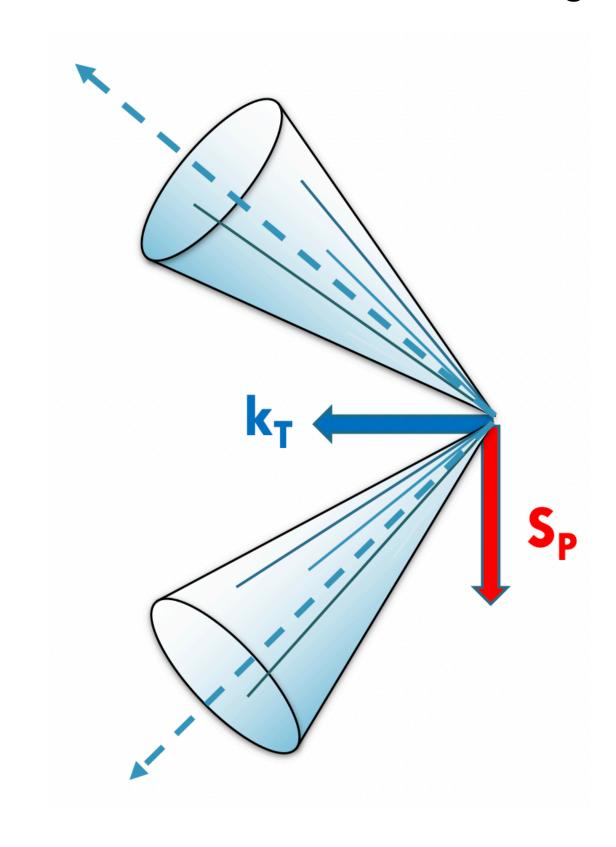
 Size of the Sivers asymmetries can be small due to flavor cancellations

Burkardt sum rule '04

$$\sum_{a=q,\bar{q},q} \int_0^1 \mathrm{d}x f_{1T}^{\perp(1)a}(x) = 0$$

• Expect u and d-quark Sivers to have opposite sign and similar magnitude (confirmed by fits)

Fatemi EINN `19, Liu DNP `19 see also Kang et al., Yuan et al.

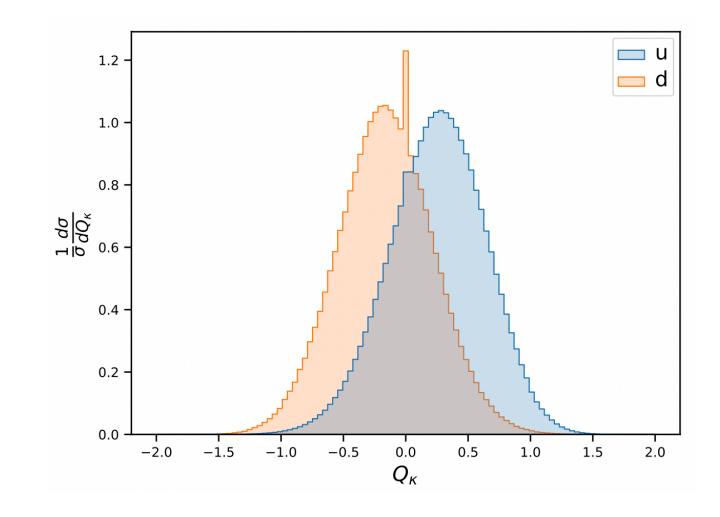


• Transverse single spin asymmetries

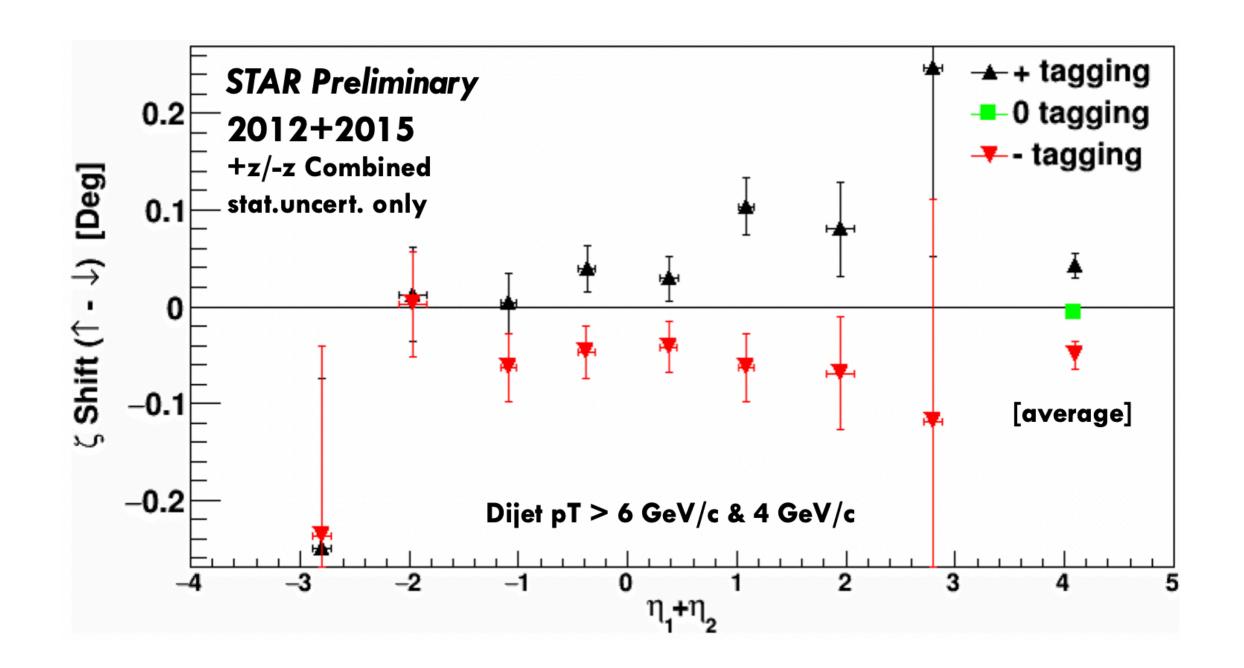
$$A_{UT} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

• Jet charge tagging can lead to a flavor separation and a non-zero asymmetry

$$Q_{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} Q_i$$



Fatemi EINN `19, Liu DNP `19 see also Kang et al., Yuan et al.



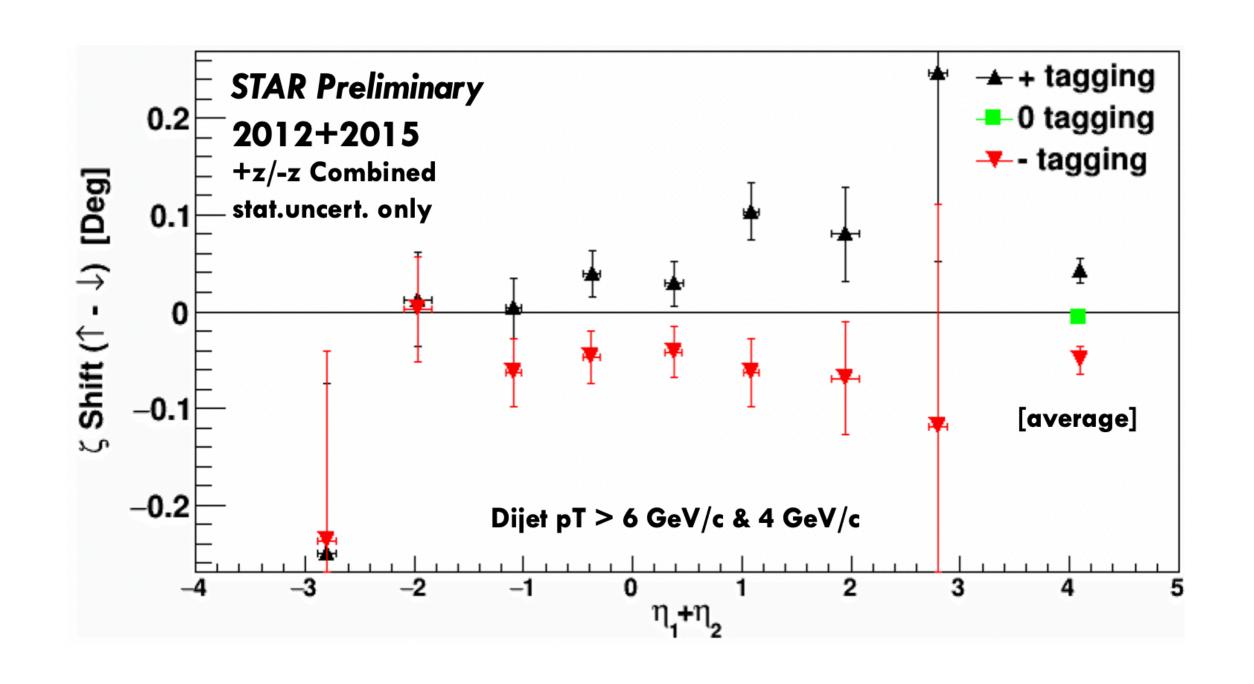
• Transverse single spin asymmetries

$$A_{UT} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

• Jet charge tagging can lead to a flavor separation and a non-zero asymmetry

$$Q_{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} Q_i$$

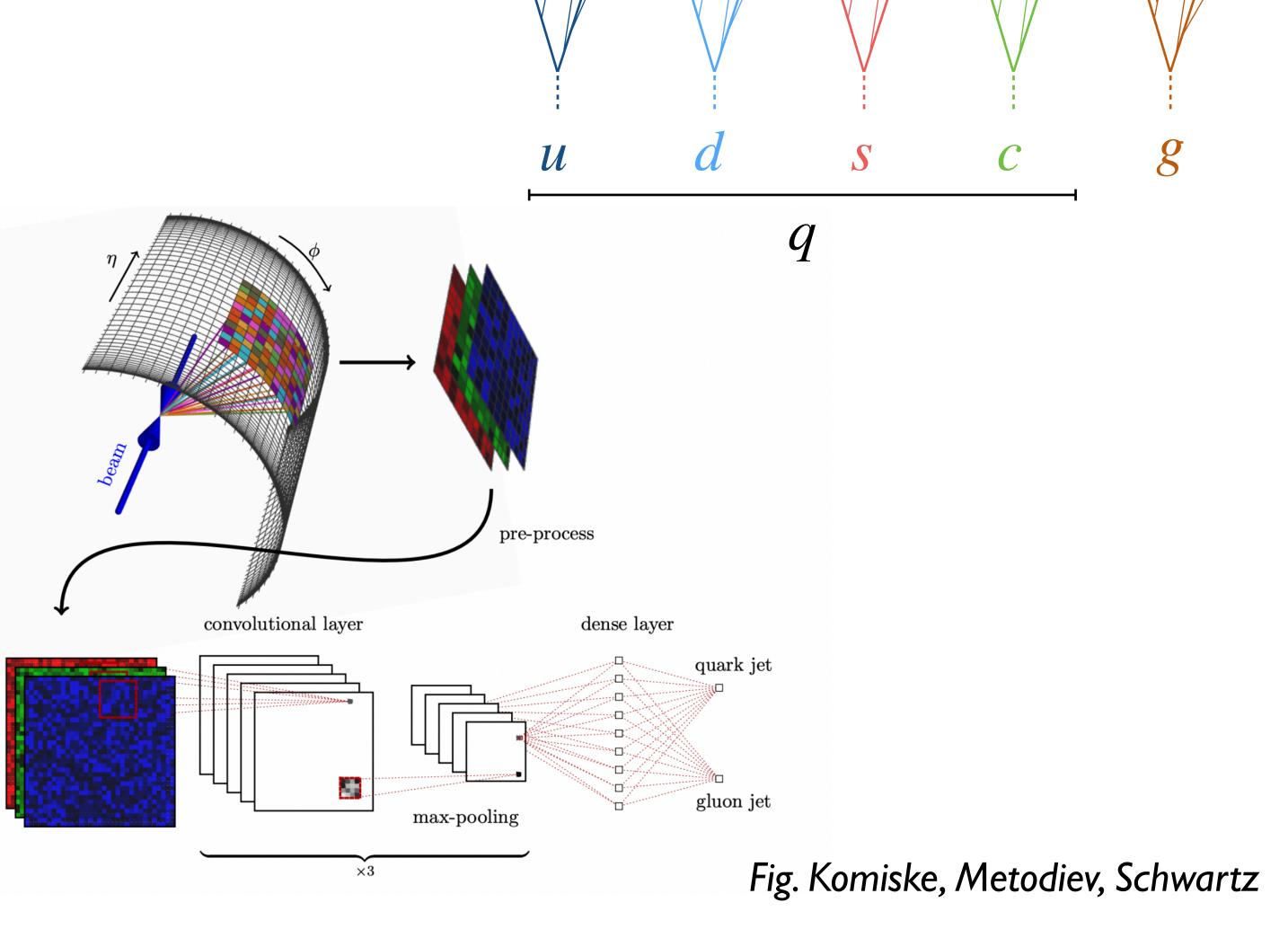
Fatemi EINN `19, Liu DNP `19 see also Kang et al., Yuan et al.



Can we potentially do even better?

Machine learning at the LHC

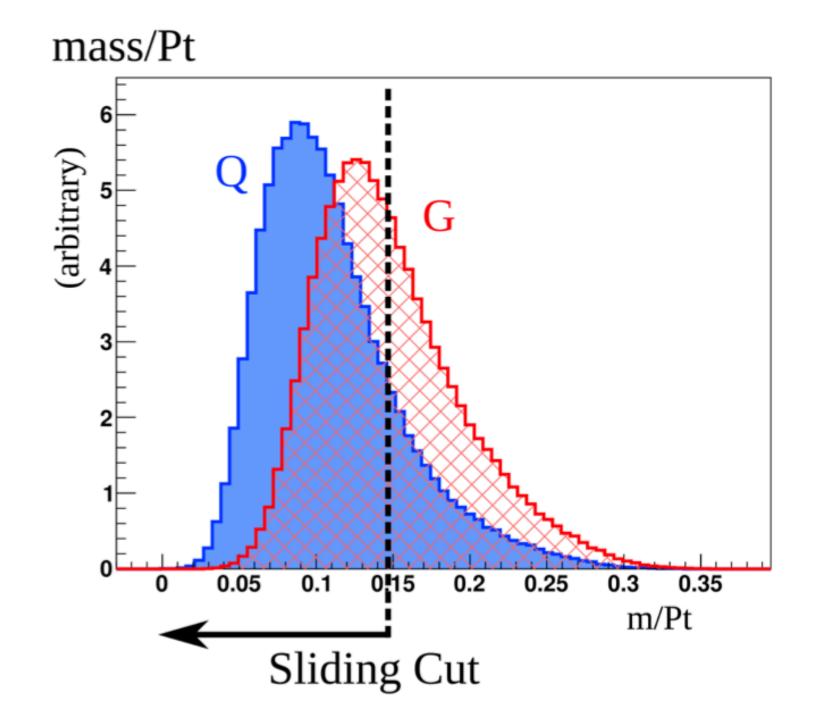
- Various jet taggers have been developed
 - Higgs, Z/W, quarks, gluon, BSM etc.
 - ML significantly outperformed traditional observables
 - ML can use the full event-by-event information
 - Interpretability

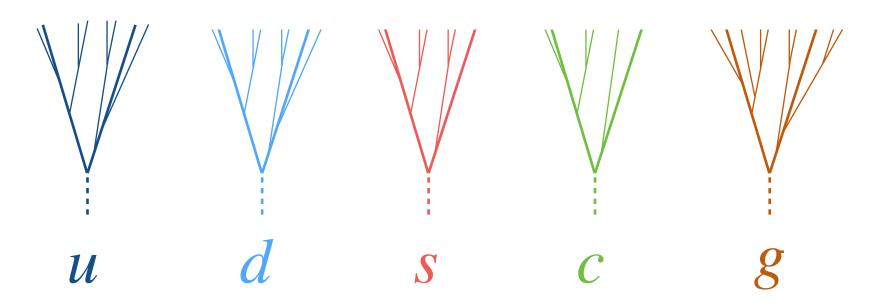


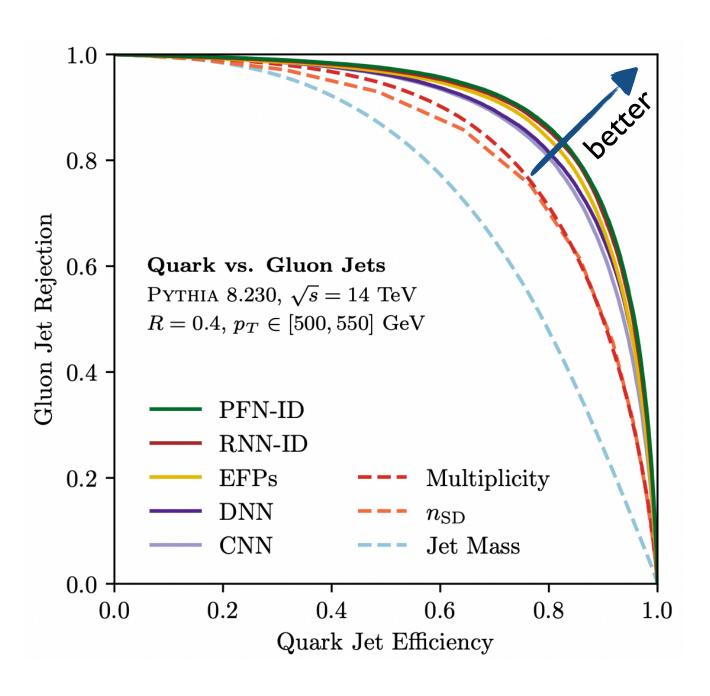
6

Machine learning at the LHC

- Various jet taggers have been developed
 - Example: Quark vs. gluon jet classification
 - Quantify using a ROC curve







Gallicchio, Schwartz Komiske, Metodiev, Thaler `19

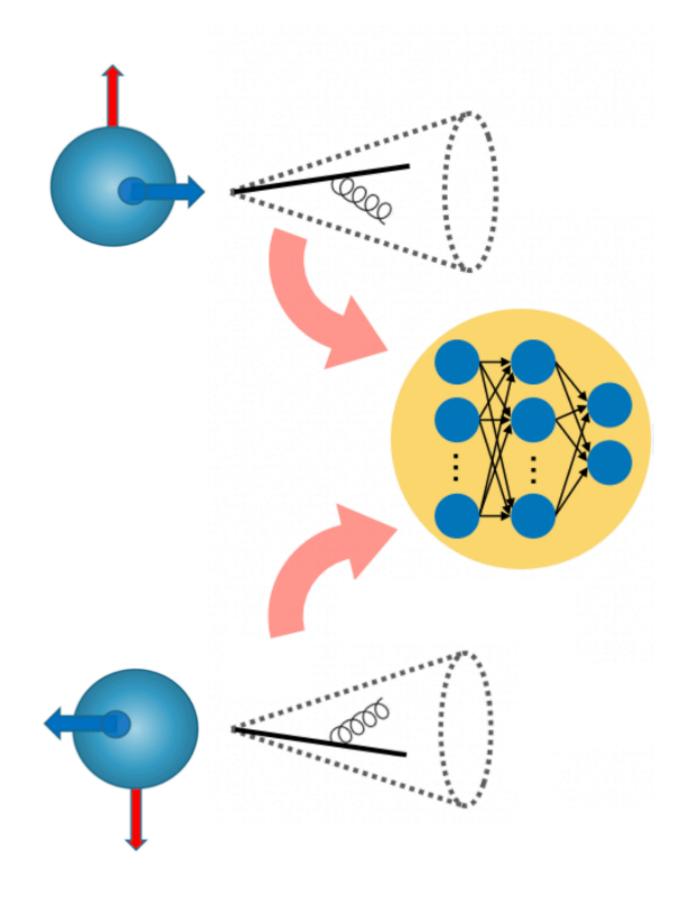
• How can we apply these techniques to spin physics?

e.g.
$$A_{UT} = rac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

Regression problem

$$\max_{\theta} |A_{UT}(\theta)|$$

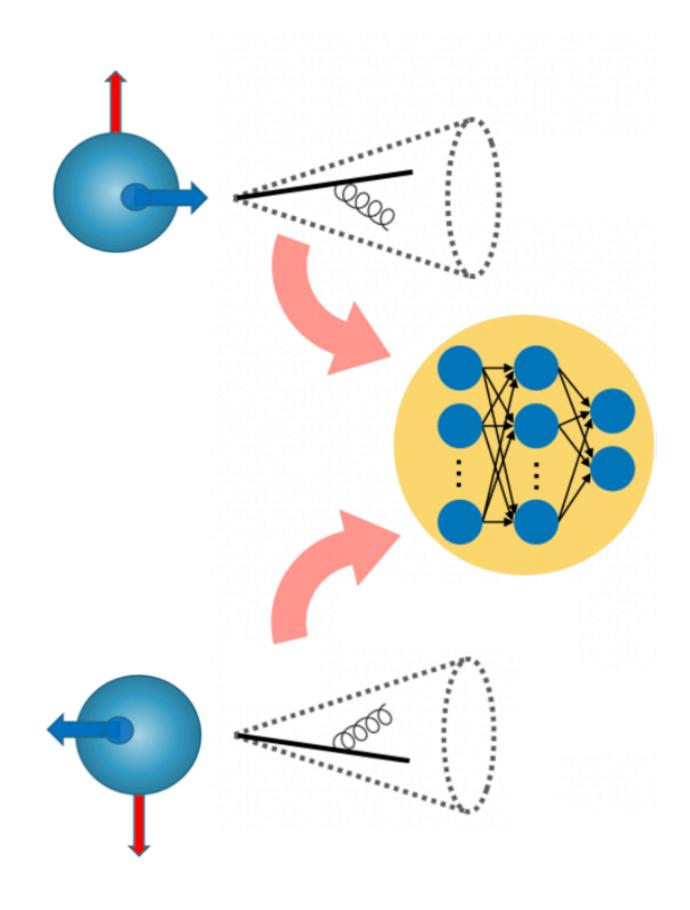
Parameters of ML model



• How can we apply these techniques to spin physics?

e.g.
$$A_{UT} = rac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

- Classification of jets $\max_{\theta} |A_{UT}(\theta)|$
- Reformulate as a classification problem of jets produced in collisions with different initial state polarization
- Can be trained on data

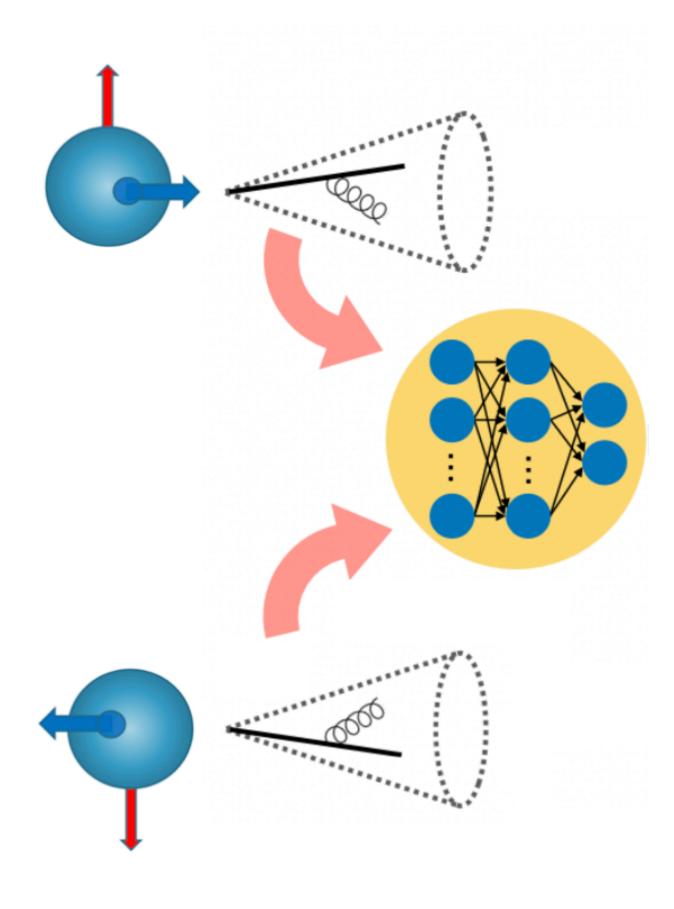


• How can we apply these techniques to spin physics?

e.g.
$$A_{UT} = rac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

- Classification of jets $\max_{\theta} |A_{UT}(\theta)|$
- Subsequently identify an ideal observable using e.g. a complete set of observables
- Ideally observable is tractable in pQCD & include in global fits

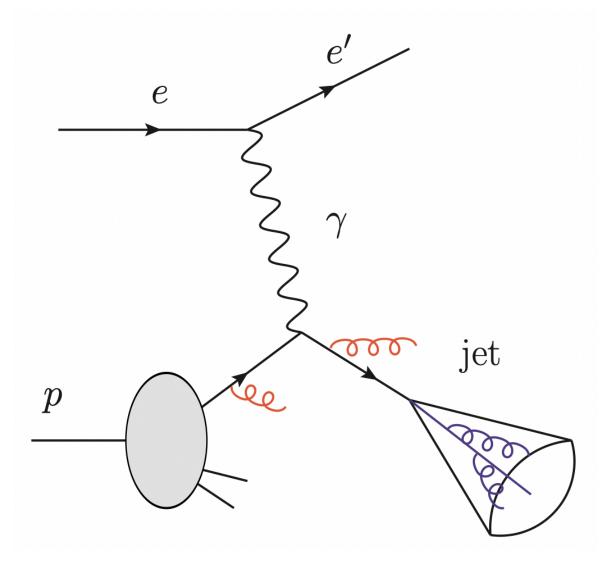
see e.g. Datta, Larkoski; Metodiev, Komiske, Thaler; Lai, Mulligan, Ploskon, FR

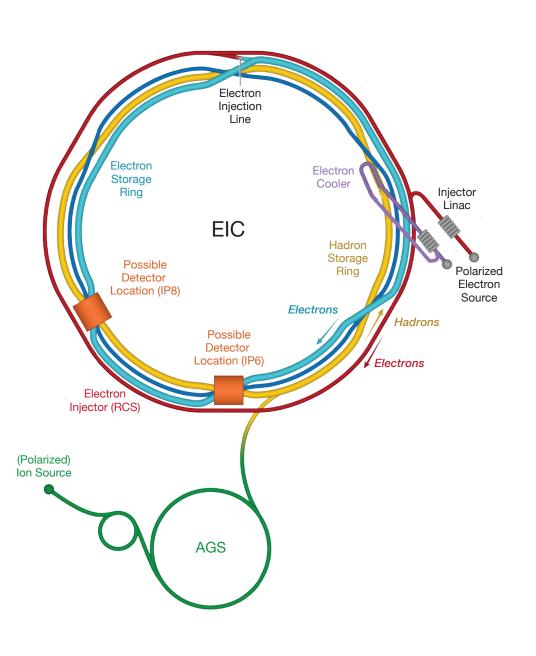


Other applications in hadron structure

• Identify strange jets, especially at the EIC

Constrain strange PDFs





Other applications in hadron structure

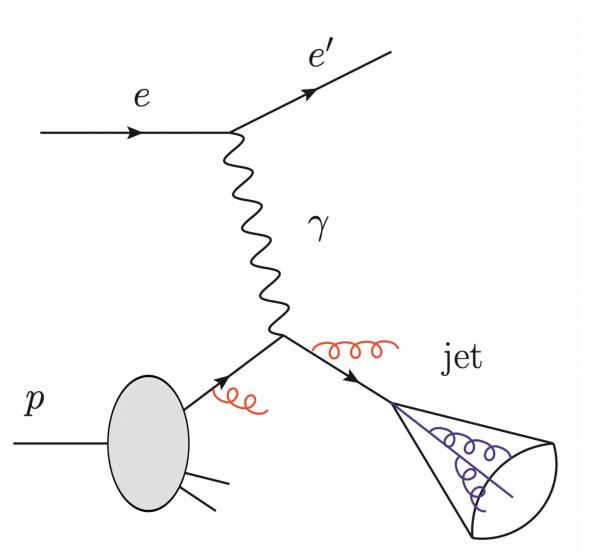
• Identify strange jets, especially at the EIC

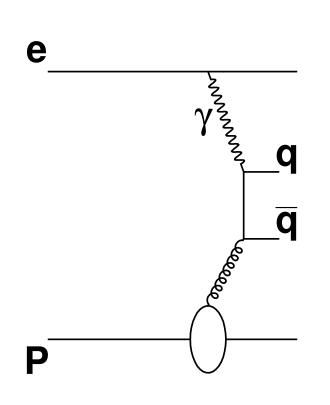
Constrain strange PDFs

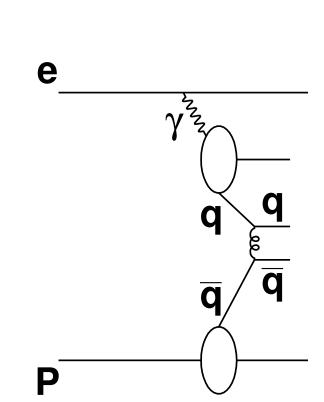
Direct vs. resolved

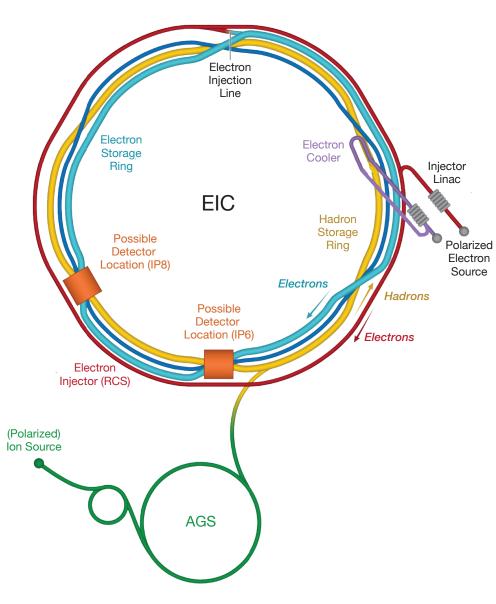
Chu, Aschenauer, Lee, Zheng `17

Various related applications





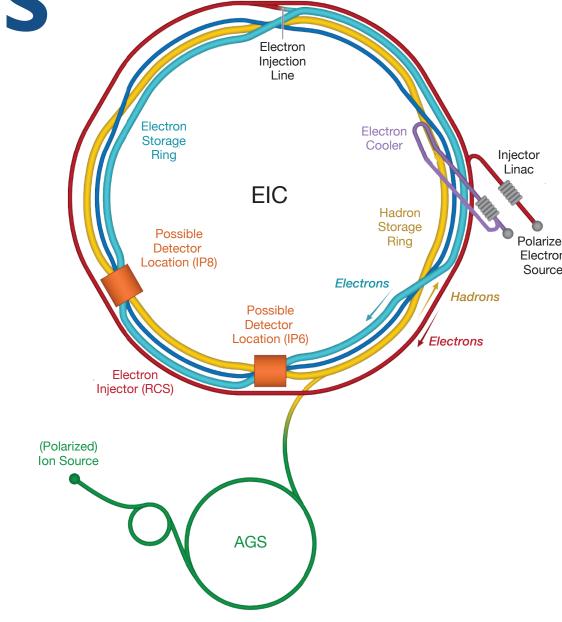


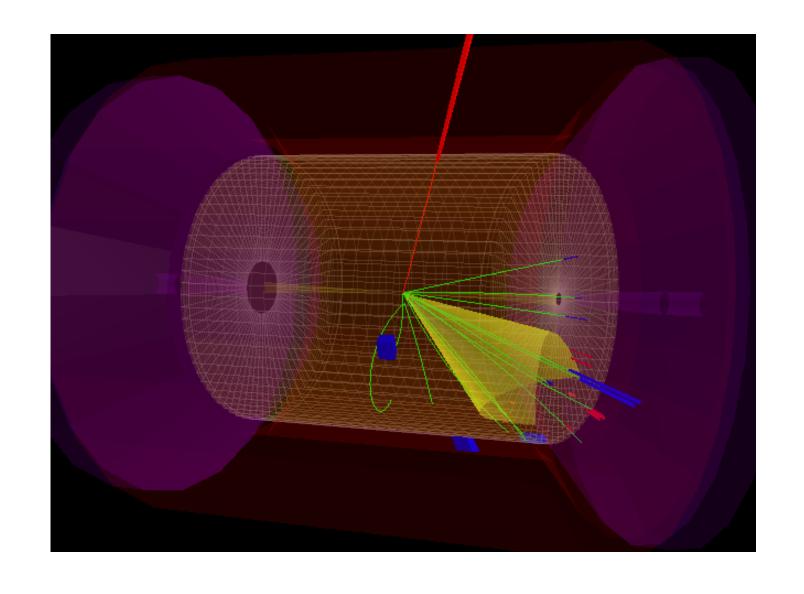


First feasibility studies

Are EIC/RHIC jets too low energy / few particles?

• Can we use the full event information?



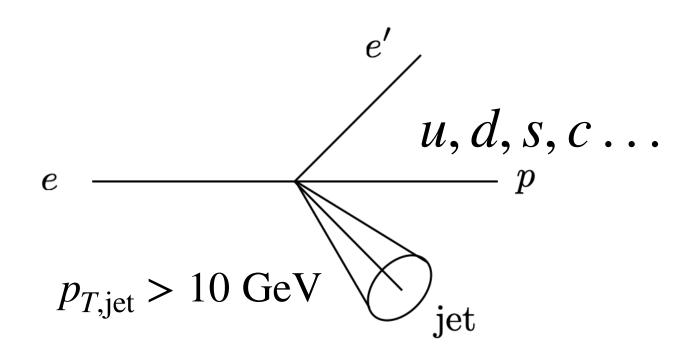


13

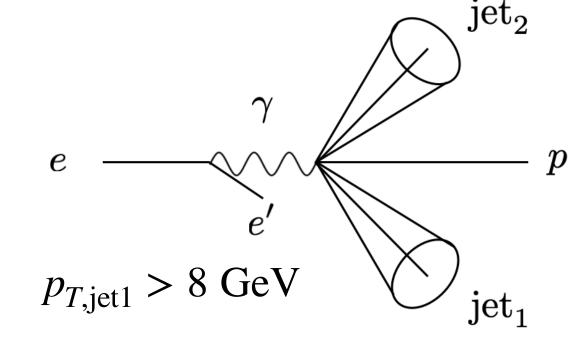
Events & machine learning

PYTHIA6

- No detector simulation
- \square Partile (p_T, η, ϕ, PID)

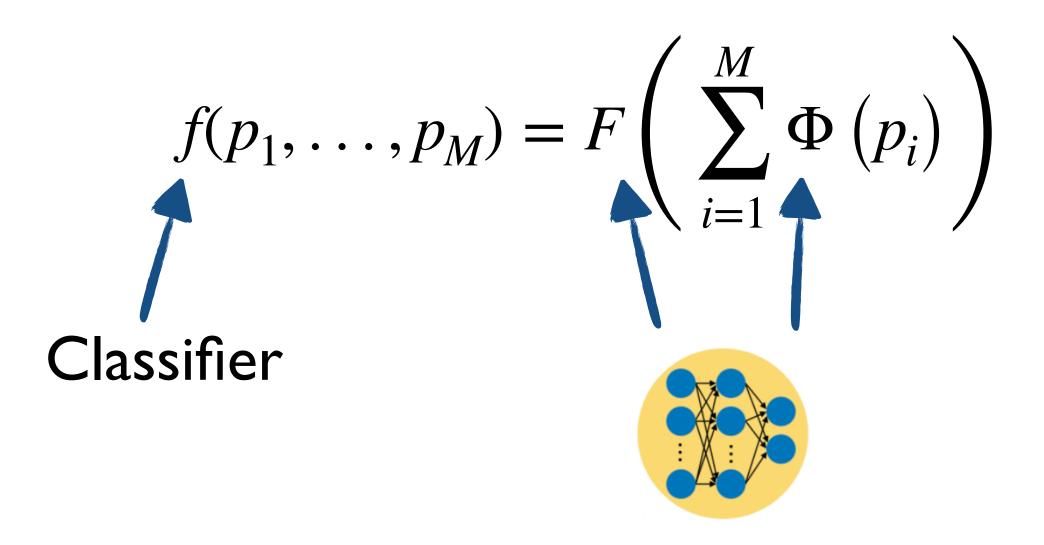


Photoproduction



Binary classification: u vs. d, ud vs. s, ...

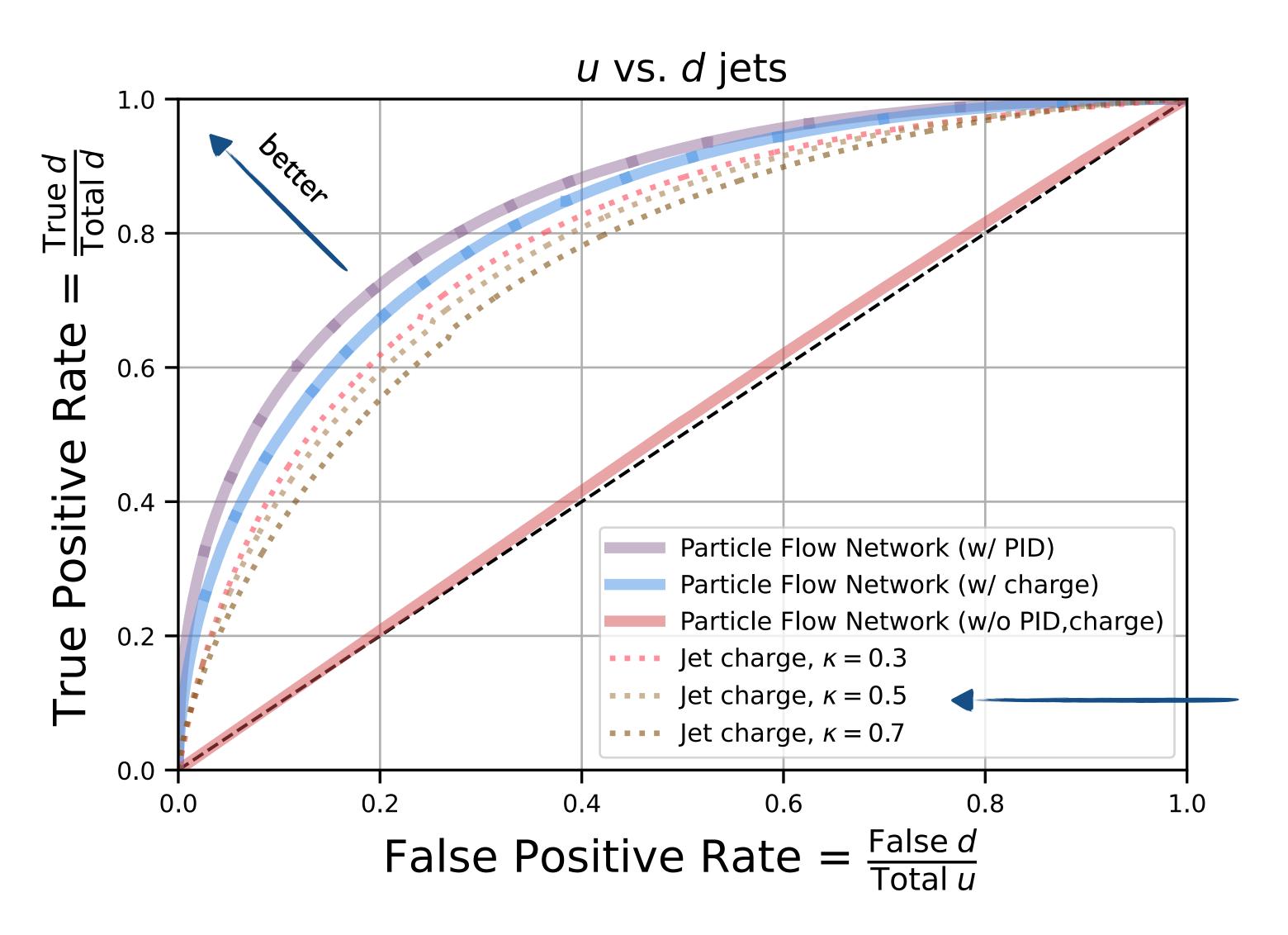
ML architecture: Particle Flow Networks

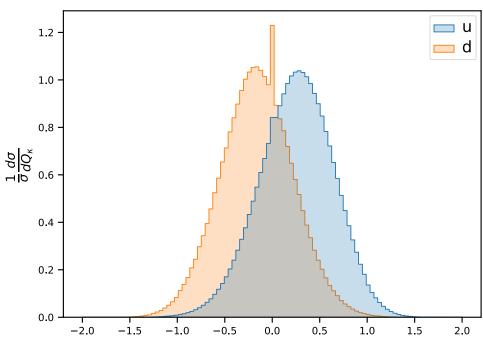


Komiske, Metodiev, Thaler JHEP 01 (2019) 121 Permutation invariant Deep Sets

14

Jet flavor tagging: u vs. d

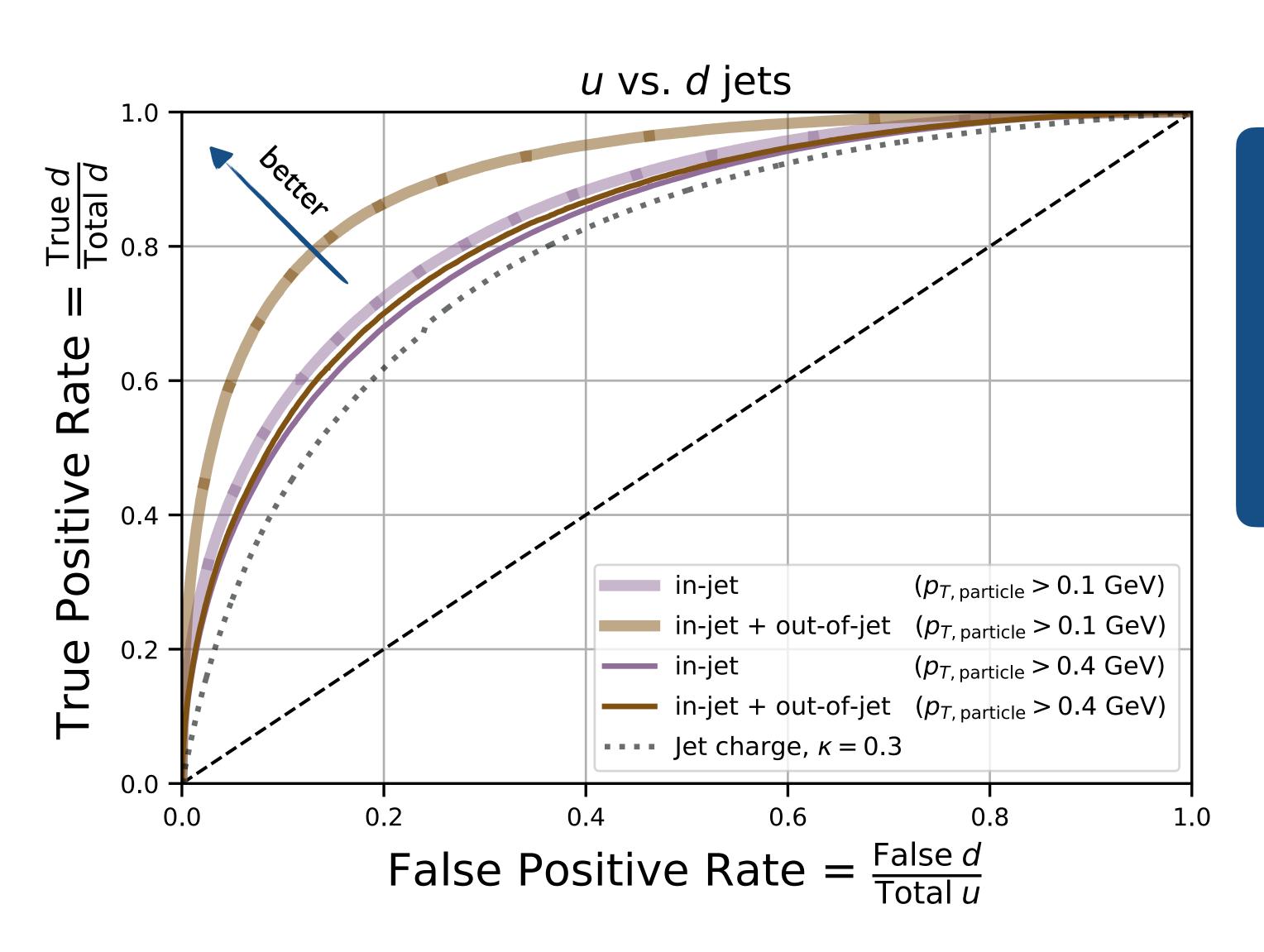




Jet charge, currently used

$$Q_{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} Q$$

Jet flavor tagging: u vs. d

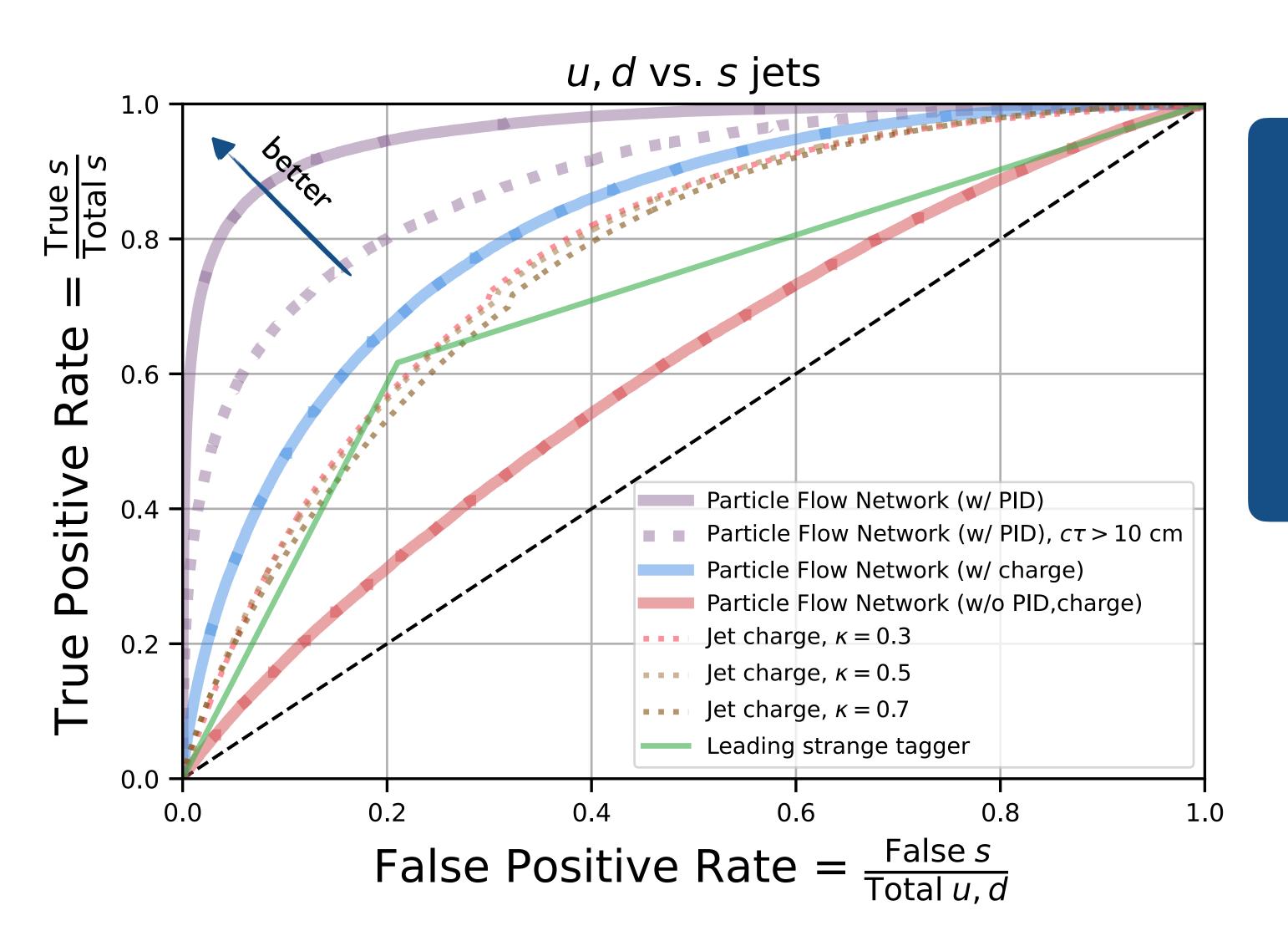


Significant gain from out-of-jet information!

- ☐ Motivates theory studies
- ☐ Impact on EIC detector?

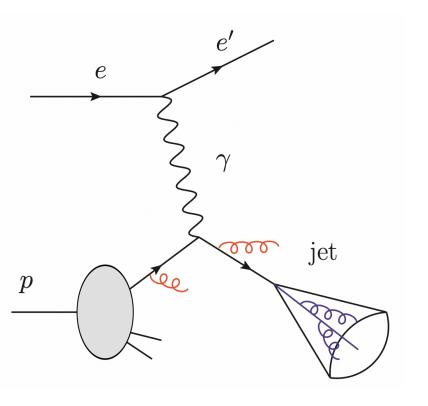
F. Ringer March 29, 2023 16

Jet flavor tagging: ud vs. s

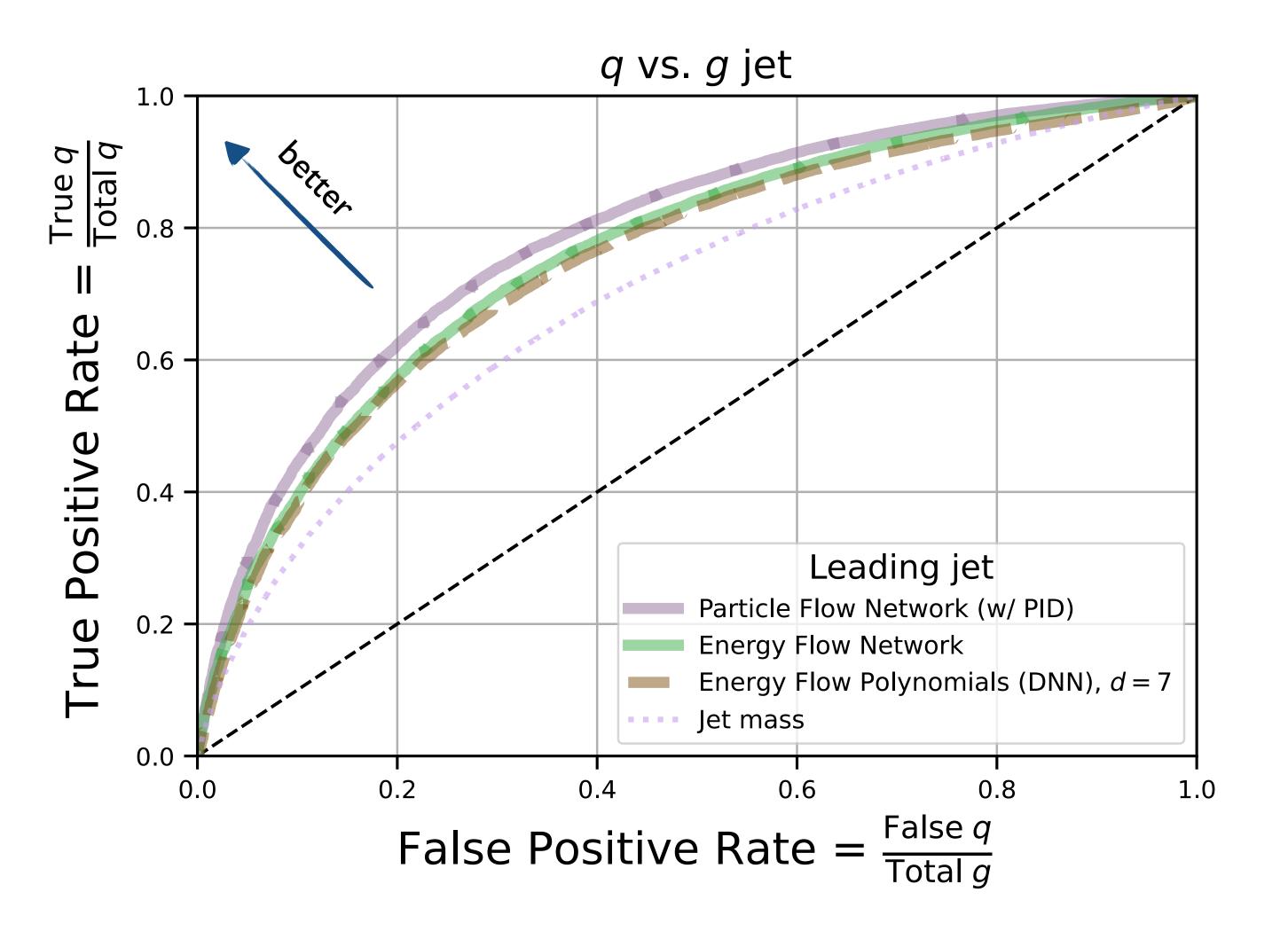


Significant gain from out-of-jet information!

- ☐ Motivates theory studies
- □ Impact on EIC detector?



Quark vs. gluon jet tagging

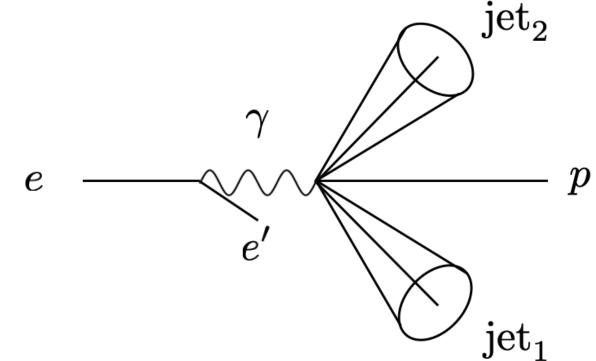


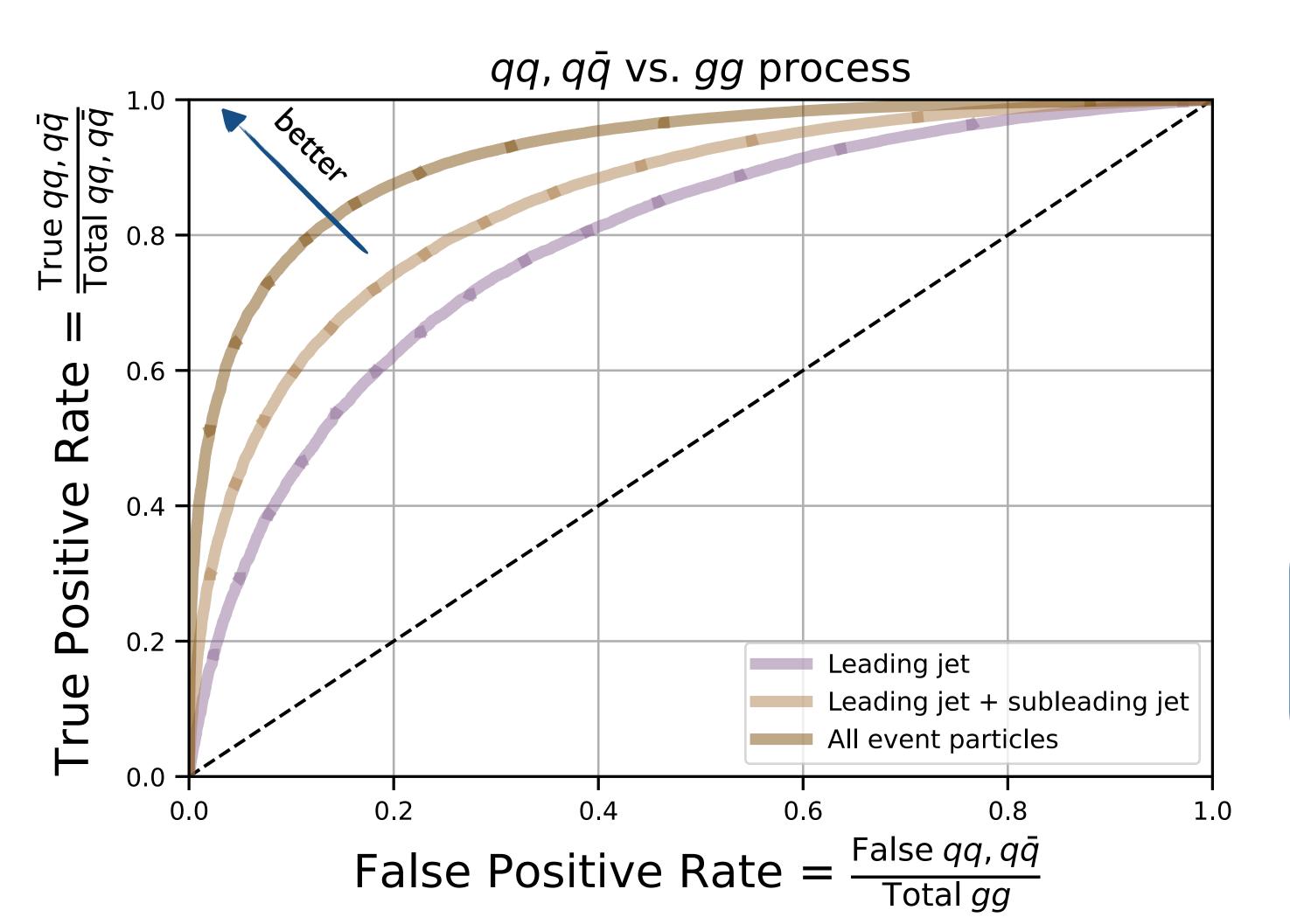
ML performance not as good as at LHC, but still reasonably good

AUC	EIC	LHC
Particle Flow Network	0.79	0.91
Energy Flow Network	0.76	0.88

Komiske, Metodiev, Thaler, `18, `19

Hard process tagging





We classify hard processes generating $qq|q\bar{q}$ vs. gg di-jets:

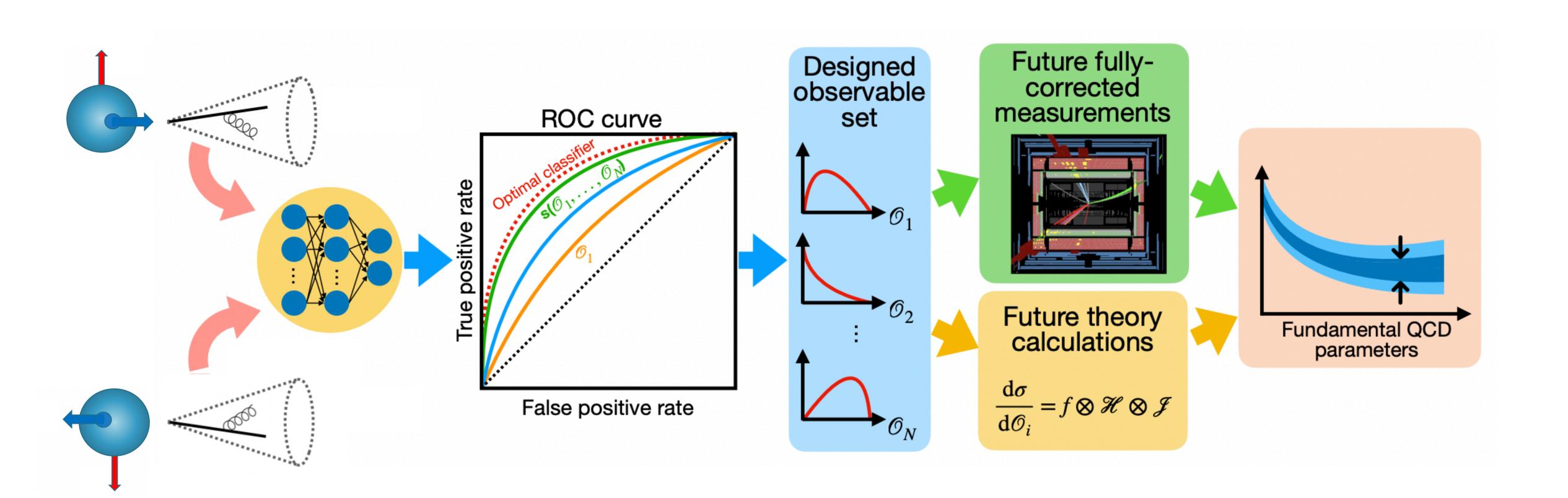
$$qq o qq, q\bar{q} o q\bar{q}, gg o q\bar{q}, \gamma_T^*g o q\bar{q}, \gamma_L^*g o q\bar{q}$$
 VS.
$$q\bar{q} o gg, gg o gg,$$

Significant improvement when adding subleading jet and out-of-jet particles

Can use this method to tag resolved photoproduction contributions

F. Ringer March 29, 2023

ML for hadron structure & spin physics



Summary

Improved access to hadron structure and spin physics at the EIC/RHIC

- Feasibility studies with potential impact on EIC design
- More quantitative work needed

PYTHIA6 indicates that ML tools are useful at EIC/RHIC

- Large performance boost for strange & charm
- Especially out-of-jet particles are relevant

Data & code: https://zenodo.org/record/7538810#.Y8RcaS-B2gQ

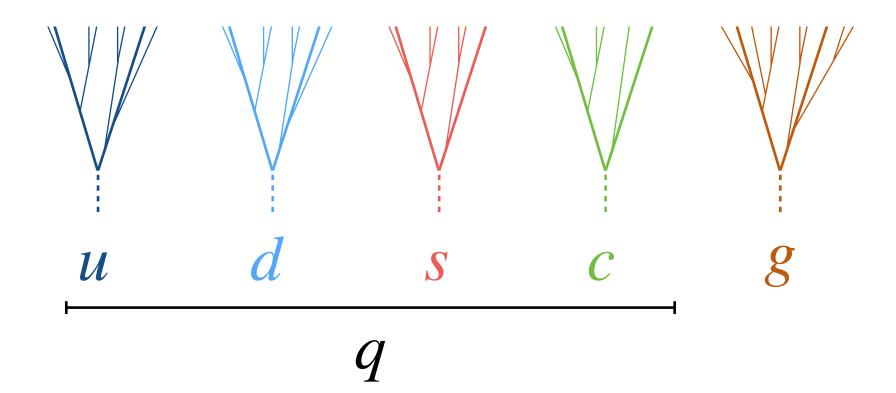
□ RHIC analysis could already be done now

21

backup

Constraining TMDs with jet flavor tagging

Determining the flavor of a jet allows stronger constraints on TMDs by avoiding spin asymmetry cancellations of different flavors



Example: Collins fragmentation function

Schäfer-Teryaev sum rule:
$$\sum_h \int_0^1 \mathrm{d}z \, H_{1,h/q}^{\perp(3)}(z) = 0$$

One usually measures identified hadrons to avoid e.g. π^+ cancellation with π^-

However the fragmentation functions still contain large parton flavor cancellations:

$$\int_0^1 dz \left(H_{1,\pi^+/u}^{\perp(3)}(z) + H_{1,\pi^+/d}^{\perp(3)}(z) \right) \approx 0$$

Tagging jet flavor will allow stronger constraints on Collins fragmentation function e.g. Arratia, Kang, Produkin, Ringer PRD 201 7, 074015 (2020)

F. Ringer March 29, 2023

Additional applications of jet flavor tagging

- Longitudinally polarized gluon distribution Δg quark flavor and quark vs. gluon Zhou, Sato, Melnitchouk (JAM), PRD 105, 074022 (2022)
- ☐ Gluon Sivers function quark vs. gluon

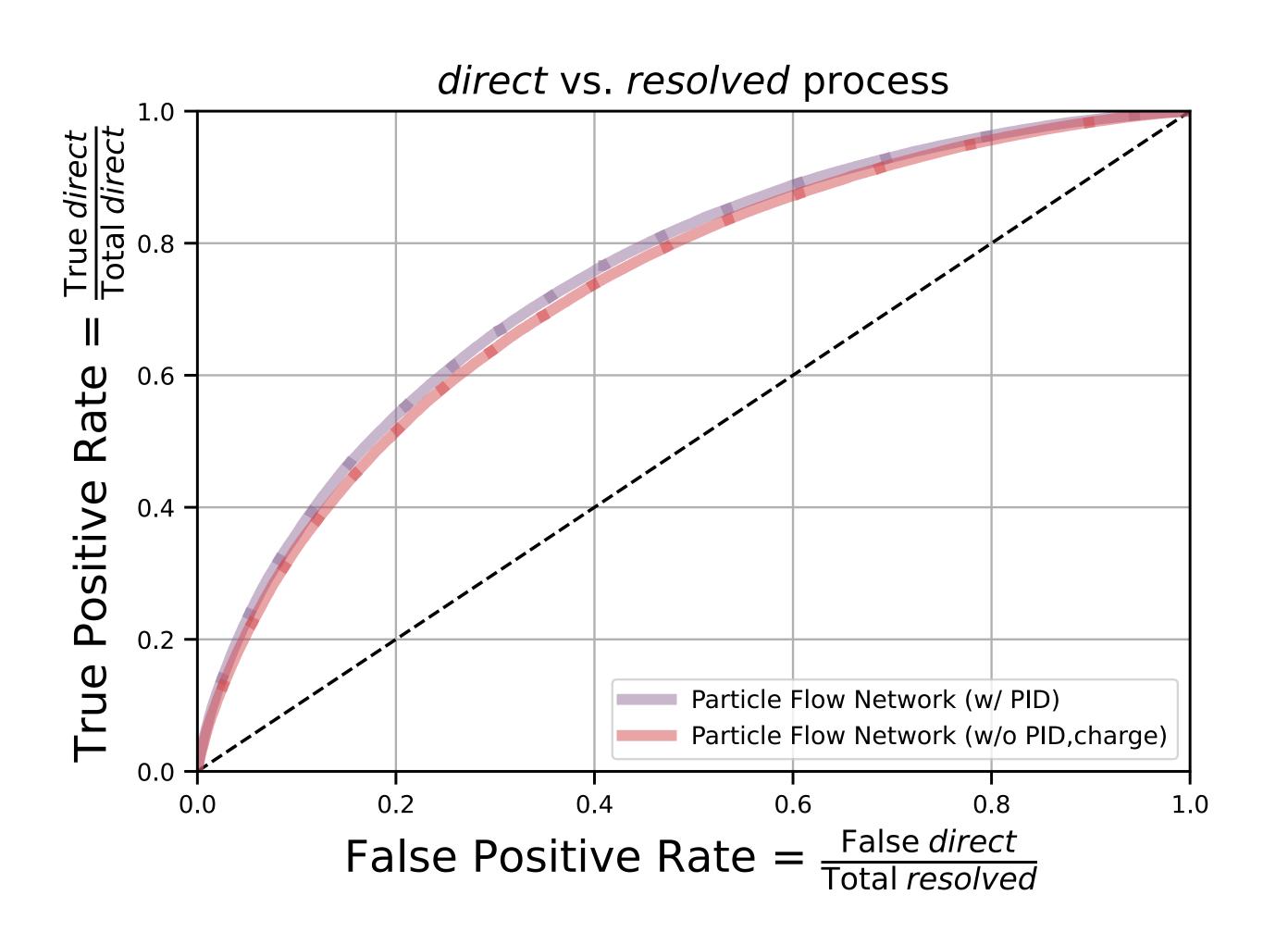
 Zheng, Aschenauer, Lee, Xiao, Yin, PRD 98, 034011 (2018)

 Liu, Ringer, Vogelsang, Yuan, PRL 122, 192003 (2019)
- □ Strange quark PDF charm tagging

 Arratia, Furletova, Hobbs, Olness, Sekula, PRD 103, 074023 (2021)
- ☐ BSM searches quark flavor Li, Yan, Yuan, arXiv:2112.07747

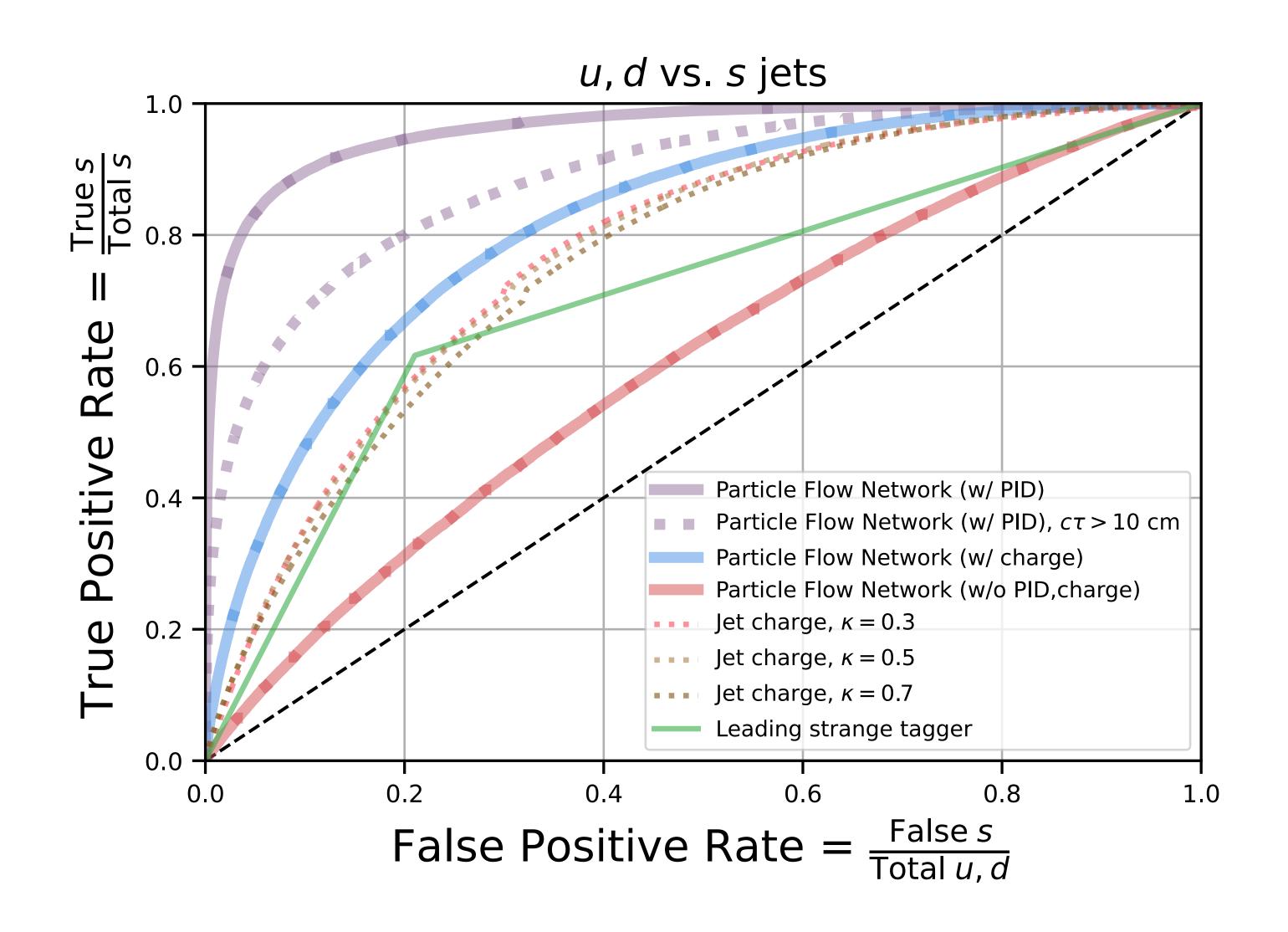
24

Direct vs. resolved photon tagging



F. Ringer March 29, 2023 25

ud vs. s



uds vs. c

