Semi-Inclusive Physics Prospects at ePIC

Christopher Dilks

on behalf of the ePIC Collaboration

DIS 2023

East Lansing, Michigan
March 2023

Research supported by the

Outline

- SIDIS, Observables, Kinematic Reach
- Parton Distribution Functions
- Fragmentation Functions
- Kinematic Reconstruction

2

Semi-inclusive Hadron Production

$$e + p \rightarrow e + h + X$$

Semi-inclusive Dihadron Production

$$e+p \rightarrow e+h_1+h_2+X$$

Target Spin Asymmetry

Beam Spin Asymmetry

Double Spin Asymmetries

$$A_{LL} = \frac{(d\sigma_{++} + d\sigma_{--}) - (d\sigma_{+-} + d\sigma_{-+})}{d\sigma}$$

The Main Goal

$d\sigma_{XY} \propto \text{Structure Functions} \propto \text{PDF} \otimes \text{FF}$

$$A_{UT} = \frac{d\sigma_{UT}}{d\sigma_{UU}} = \frac{d\sigma_{\uparrow} - d\sigma_{\downarrow}}{d\sigma}$$

(or DiFF)

Goal:

- Probe spin/orbit effects within the proton and during hadronization
- ◆ 3D Transverse Spin and Momentum Structure

- EIC: study p_T, Q², and x dependence of asymmetries in wide kinematic range
- Comparisons with JLab, HERMES, and COMPASS, to pin down p_T dependence and evolution
- Need overlap of kinematic regions for evolution studies and cross checks (JLab @ 22 GeV, EicC)
- For EIC overlap, need control over reconstruction at low y and low p₊

Outline

- ◆ SIDIS, Observables, Kinematic Reach
- Parton Distribution Functions
- Fragmentation Functions
- Kinematic Reconstruction

Transverse Momentum Dependent (TMD) PDFs

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
Nucleon Polarization	U	Unpolarized PDF $f_1 = ldot$	*	Boer-Mulders $h_1^\perp = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	L	*	Helicity $g_1=ldots$	Kotzinian-Mulders $h_{1L}^{\perp}= extstyle - extstyle $		
	Т	Sivers $f_{1T}^\perp = \bigodot - \bigodot$	Kotzinian-Mulders $g_{1T}=igcdot$ – $igcdot$	Transversity $h_1=$ - \uparrow - Pretzelosity $h_{1T}^{\perp}=$ - \downarrow		

Figure from S.J. Brodsky, et al., Int.J.Mod.Phys.E 29 (2020) 08, 2030006

Transverse Momentum Dependent (TMD) PDFs

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
Nucleon Polarization	U	Unpolarized PDF $f_1 = ldot$	*	Boer-Mulders $h_1^\perp = \ lacktrlambda$ - $lacktrlambda$		
	L	*	Helicity $g_1 = lacksquare$	Kotzinian-Mulders $h_{1L}^{\perp}= \checkmark$		
	Т	Sivers $f_{1T}^\perp = \begin{array}{c} \bullet \\ \bullet \end{array} - \begin{array}{c} \bullet \\ \bullet \end{array}$	Kotzinian-Mulders $g_{1T}=igcdot$ – $igcdot$	Transversity $h_1=$ - Pretzelosity		
				$h_{1T}^{\perp} = \bigodot - \bigodot$		

Figure from S.J. Brodsky, et al., Int.J.Mod.Phys.E 29 (2020) 08, 2030006

Unpolarized Nucleons

Unpolarized SIDIS:

- ◆ Cahn Effect: quark transverse momentum leads to azimuthal modulations of SIDIS cross section
- ◆ Boer-Mulders Effect: Non-collinear quarks in an unpolarized proton can have transverse polarization, also contributing azimuthal modulations

Boer-Mulders and Cahn effects are comparable in single hadron production

- HERMES and COMPASS data, e.g. Phys.Rev.D 81 (2010) 114026
- Dihadrons can help decouple BM from Cahn
 - Extra degree of freedom in dihadrons
 - Cahn effect impacts dihadron total momentum direction P_h
 - Utilize azimuthal angle about P_h, in addition to the azimuth about the virtual photon
- Advantages from a broader and higher Q² range at ePIC
 - Broader Q² range probes evolution effects
 - Higher Q² suppresses Cahn effect in single-hadron asymmetries (Cahn is twist-4)
 - Lower Q² for overlap with other SIDIS experiments

Transversely Polarized Nucleons

Transversely polarized SIDIS:

- Access to several additional TMDs:
 - **Transversity** → Tensor Charge

$$h_1 = \stackrel{\bullet}{ } - \stackrel{\bullet}{ }$$

$$h_1 = 1$$
 - \uparrow

$$\delta q = \int_{-1}^{1} dx h(x) = \int_{0}^{1} dx \left[h(x) - \bar{h}(x) \right]$$

$$g_T = \delta u - \delta d$$

Comparisons with lattice OCD calculation

Transversely Polarized Nucleons

Transversely polarized SIDIS:

- Access to several additional TMDs:
 - Transversity → Tensor Charge

$$h_1 = \stackrel{\bigstar}{\bullet} - \stackrel{\bigstar}{\bullet}$$

$$\delta q = \int_{-1}^{1} dx h(x) = \int_{0}^{1} dx [h(x) - \bar{h}(x)]$$

$$g_T = \delta u - \delta d$$

- Quark EDM contribution to nucleon EDM
 - Comparisons with lattice QCD calculation

ePIC Impact $ep + e^3 He$

Dihadron Impact on Transversity

0.0

- Complementary to single-hadron SIDIS and hadrons in jets
- Complementarity reduces systematic uncertainties overall
- Additional advantages from dihadrons:
 - Expect little contribution from twist-3 FFs
 - Acceptance effects tend to "average out" between the two hadrons, which is especially good for F_{UU} measurements (Boer-Mulders function)

C. Dilks

SIDIS at ePIC

21

Transversely Polarized Nucleons

Transversely polarized SIDIS:

- Access to several additional TMDs:
 - Sivers Function

$$A_{UT}^{\sin(\phi_h - \phi_S)} \propto f_{1T}^{\perp} \otimes D_1$$

Collins Fragmentation

$$A_{UT}^{\sin(\phi_h + \phi_S)} \propto h_1 \otimes H_1^{\perp}$$

A. Bacchetta, et al., JHEP 02 (2007) 093

EIC Impact on the Sivers Function

A. Bacchetta and M. Radici, Phys.Rev.Lett. 107 (2011) 212001

M. Radici, AIP Conference Proceedings 1735, 020003 (2016) Distorted Momentum distribution from Sivers, for transversely polarized (y) proton

TMD Evolution

- Expect logarithmic decrease, but asymmetries don't "disappear"
- Larger asymmetries expected at higher x
- ◆ Wide (x,Q2) range at ePIC → probe evolution
- **♦ Study sea and gluons at lower x**

A. Vladimirov, IR2@EIC workshop, Mar 2021

Collinear Twist-3 PDFs

Semi-classical interpretation via x-moments

Average longitudinal gradient of the transverse force on a transversely polarized struck quark in a longitudinally polarized nucleon

$$\mathcal{L}_{JM}^q - L_{Ji}^q = \Delta L_{FSI}^q$$

Expressible in terms of the change in quark OAM as it leaves the target

M. Burkardt, Phys.Rev.D 88 (2013) 114502

M. Abdallah, M. Burkardt, Phys.Rev.D 94 (2016) 9, 094040

- M. Abdallah, M. Burkardt, Phys.Rev.D 94 (2016) 9, 094040
- M. Burkardt, Phys.Rev.D 66 (2002) 114005
- P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461 (1996) 197-237

EIC Impact on Collinear Twist-3 PDFs: h_i(x)

- ◆ Accessible in target spin asymmetry A_{UL}
 - Depolarization <u>allows</u> for broad coverage
 - cf. Ongoing experiment at CLAS12 → evolution!

Bag Model

Jaffe and Ji, Nucl. Phys. B375 (1992) 527-560

Spectator Model

Jakob, Mulders, and Rodrigues, Nucl. Phys. A626 (1997) 937-965

Figures from JLab Proposal E12-06-112B/E12-09-008B

See also:

- Chiral Quark Soliton Model
- Light Front Constituent Quark Model

Cebulla et al., Acta Phys.Polon. B39 (2008) 609-640

Lorcé, Pasquini, Schweitzer, JHEP 1501 (2015) 103

EIC Impact on Collinear Twist-3 PDFs: $g_{\tau}(x)$

■ x-Moment → semi-classical interpretation: Average transverse force on an **unpolarized** struck quark in a **transversely** polarized nucleon

M. Abdallah, M. Burkardt, Phys.Rev.D 94 (2016) 9, 094040

- ◆ Accessible in inclusive measurements:
- ϕ g_r(x) is also accessible in double spin asymmetry A_r in semi-inclusive dihadrons
 - Caveat: depolarization for A₁₊ favors high y...

Outline

- ◆ SIDIS, Observables, Kinematic Reach
- Parton Distribution Functions
- Fragmentation Functions
- Kinematic Reconstruction

Single-hadron Fragmentation Functions

Parton polarization >	Spin averaged	longitudinal	transverse
Hadron Polarization			
spin averaged	$D_1^{h/q}(z,p_T) = \left[\bullet \longrightarrow \bigcirc \right]$		$H_1^{\perp h/q}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \longrightarrow \right) - \left(\stackrel{\bullet}{\bullet} \longrightarrow \right)$
longitudinal		$G_1^{\Lambda/q}(z,p_T) = \left(\longrightarrow \bigcirc $	$H_{1L}^{h/q}(z, p_T)$ $\left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\longrightarrow} \right] - \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\longrightarrow} \right]$
Transverse (here Λ)	$D_{1T}^{\perp \Lambda/q}(z,p_T) = \left[\bullet \rightarrow \bullet \right]$		$H_1^{\Lambda/q}(z, p_T) = \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} - \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}$
		$G_{1T}^{h/q}(z,p_T) = \left[\bullet \to \stackrel{\uparrow}{\bullet} \right] - \left[\bullet \to \stackrel{\uparrow}{\bullet} \right]$	

Table from A. Vossen, INT-18-3

Single-hadron Fragmentation Functions

"well known" unpolarized FFs

Single-hadron Fragmentation Functions

ECCE consortium. (2022). EIC Comprehensive Chromodynamics Experiment Collaboration Detector Proposal.

Single-hadron Fragmentation Functions

Access via spontaneous polarization

$$P_{\Lambda} = \frac{F_{UT}^{\sin(\phi_S - \phi_{\Lambda})}}{F_{UU}}$$

Transversely polarized Λs "Self-analyzing" decay → pπ → Final state polarization!

Access via spin transfer

$$S_{\Lambda} = D(y) \frac{F_{TT}^{\cos(\varphi_S - \phi_S)}}{F_{UU}}$$

Impact on TMD Polarizing Fragmentation Function

Extracted TMD PFF moment

Theoretical Uncertainty Impact

Figures from Phys.Rev.D 105 (2022) 9, 094033

- ◆ Larger bands: from Belle [Phys.Rev.D 102 (2020) 9, 096007]
- ♦ Smaller bands: Belle + EIC pseudodata

Impact on Transversity TMD FF & Spin Transfer

Transversity FF extracted from COMPASS [Phys.Lett.B 824 (2022) 136834]

- ◆ EIC Impact on Spin Transfer
 - Red bands: theoretical uncertainty
 - Black error bars: projected statistical uncertainty (40 fb⁻¹)

Figures from Phys.Rev.D 105 (2022) 9, 094033

Dihadron Fragmentation Functions

$$D_1 = \bigcirc \stackrel{\mathsf{h1}}{\longleftarrow} \stackrel{\mathsf{h2}}{\mathsf{h2}}$$

$$G_1^{\perp} = 6$$

$$H_1^{\perp}, H_1^{\triangleleft} = \bigoplus_{h2}^{h1} - \bigoplus_{h2}^{h1}$$

Dihadron polarization dependence → partial waves...

Dihadrons for Gluon Saturation

- lacktriangle Away-side peak in $\Delta \phi$ de-correlates when non-linear QCD effects set in
- Sensitive to gluon TMDs
- igoplus Measure suppression J_{eAu} , the relative e+Au to e+p back-to-back dihadron yields
 - Scaled by A^{1/3}
 - J_{eAu} ~1 if no collective nuclear effects

Outline

- ◆ SIDIS, Observables, Kinematic Reach
- Parton Distribution Functions
- Fragmentation Functions
- Kinematic Reconstruction

Kinematics Reconstruction

 p_{q_f}

current jet

spectators

- Study SIDIS in a particle collider context
- Need to develop tools for accurate reconstruction of event kinematics

 $q = q_l, y_m = y_{JB}$

$$vi)$$
 θy $method$ [84]

$$vii)$$
 Σ $method$ [85]

viii)
$$e\Sigma$$
 method [85]

$$Q_{DA}^{2} = \frac{4E(k_{2})^{2} \cos^{2}(\theta(k_{2})/2)}{\sin^{2}(\theta(k_{2})/2) + \sin(\theta(k_{2})/2)\cos(\theta(k_{2})/2)\tan(\theta(p_{2})/2)},$$

$$y_{DA} = 1 - \frac{\sin(\theta(k_2)/2)}{\sin(\theta(k_2)/2) + \cos(\theta(k_2)/2) \tan(\theta(p_2)/2)},$$

$$Q_{\theta y}^2 = 4E(k_2)^2 (1 - y_{JB}) \frac{1 + \cos(\theta(k_2))}{1 - \cos(\theta(k_2))}, \quad y_{\theta y} = y_{JB}$$

$$Q_{\theta y}^2 = 4E(k_2)^2(1 - y_{JB})\frac{1 + \cos(\theta(k_2))}{1 - \cos(\theta(k_2))}, \quad y_{\theta y} = y_{JB}$$

$$Q_{\Sigma}^{2} = \frac{(\vec{k}_{2,\perp})^{2}}{1 - y_{\Sigma}}, \quad y_{\Sigma} = \frac{\Sigma}{\Sigma + E(k_{2})[1 - \cos(\theta(k_{2}))]}$$
$$Q_{e\Sigma}^{2} = Q_{l}^{2}, \quad y_{e\Sigma} = \frac{Q_{l}^{2}}{sx_{\Sigma}}$$

$$Q_{e\Sigma}^2 = Q_l^2, \quad y_{e\Sigma} = \frac{Q_l^2}{sx_{\Sigma}}$$

Difficulties at low y

ATHENA, best method for y-reconstruction

ATHENA Detector Proposal, JINST 17 (2022) 10, P10019

Neural Network Approaches

Al for kinematics reconstruction shows promising results!

C. Pecar, 2nd Workshop on AI for the EIC (Oct. 2022)

See also M. Diefenthaler, et al., Eur.Phys.J.C 82 (2022) 11, 1064

Summary

- SIDIS Cross Sections and Asymmetries probe a wide range of functions
 - Transverse Momentum Dependent PDFs
 - Sivers, Collins, Boer-Mulders, Twist-3, ...
 - Fragmentation Functions
 - Collins, Transverse spin-dependent (Λs), ...
 - Dihadron Fragmentation functions
- ePIC will have significant impact
 - Uncertainty reduction
 - Evolution studies & complementarity with other experiments

Many analysis opportunities will be available, for both experiment and theory!

BACKUP

42

Transversely Polarized Nucleons

Transversely polarized SIDIS:

Access to several additional TMDs:

Only valence quarks known, within 0.01<x<0.3

Currently no sensitivity to sea quarks and low x

Phys.Rev.D 102 (2020) 5, 054002

ePIC Impact on Tensor Charge

ECCE consortium. (2022). EIC Comprehensive Chromodynamics Experiment Collaboration Detector Proposal.

EIC Impact on Collinear Twist-3 PDFs: e(x)

45

- ightharpoonup e(x) is accessible in beam spin asymmetry A_{LU}
- Cleaner access in dihadrons, compared to single-hadron SIDIS (which involves additional unknowns)
- igoplus Caveat: depolarization for A_{LU} favors high y

Courtoy, Aurore, et al. e-Print: 2203.14975 [hep-ph]

Courtoy, Aurore – CPHI 2022

Impact on Spontaneous Polarization

Dihadron Access to PDFs x DiFFs

Twist 2

Target Polarization

		1		
		U	${f L}$	${f T}$
Beam Polarization	U	$f_1D_1 \\ h_1^{\perp}H_1$	$h_{1L}^{\perp}H_1$ $g_{1L}G_1$	$f_{1T}^{\perp}D_1$ $g_{1T}G_1$
olari				h_1H_1
ım P				$h_{1T}^{\perp}H_1$
Bea	$\mid \mathbf{L} \mid$	f_1G_1	$g_{1L}D_1$	$g_{1T}D_1$
				$f_{1T}^{\perp}G_1$

Twist 3

Target Polarization

		U	L	Т
Polarization	U	$hH_1 f_1\tilde{D}$ $f^{\perp}D_1 h_1^{\perp}\tilde{H}$	$h_L H_1 g_{1L} \tilde{G}$ $f_L^{\perp} D_1 h_{1L}^{\perp} \tilde{H}$	$f_T D_1 h_1 \tilde{H}$ $h_T H_1 g_{1T} \tilde{G}$ $h_T^{\perp} H_1 f_{1T}^{\perp} \tilde{D}$
Beam Pola	L	$\begin{array}{c c} eH_1 & f_1\tilde{G} \\ g^{\perp}D_1 & h_1^{\perp}\tilde{E} \end{array}$	$\begin{array}{ccc} e_L H_1 & g_{1L} \tilde{D} \\ g_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{E} \end{array}$	$f_T^{\perp}D_1 h_{1T}^{\perp}\tilde{H}$ $g_TD_1 h_1\tilde{E}$ $e_TH_1 g_{1T}\tilde{D}$ $e_T^{\perp}H_1 f_{1T}^{\perp}\tilde{G}$ $g_T^{\perp}D_1 h_{1T}^{\perp}\tilde{E}$

Dihadron Access to PDFs x DiFFs

Twist 2

Target Polarization

			_	
		U	L	${f T}$
m Polarization	U	$egin{array}{cccc} oldsymbol{\mathcal{A}} & f_1D_1 \ oldsymbol{\mathcal{B}} & h_1^\perp H_1 \end{array}$	12	$oldsymbol{A} f_{1T}^{\perp}D_1$ $oldsymbol{A} g_{1T}G_1$ $oldsymbol{B} h_1H_1$ $oldsymbol{B} h_{1T}^{\perp}H_1$
Beam	L	$C f_1G_1$	$C g_{1L}D_1$	$m{C} \ g_{1T}D_1 \ f_{1T}^{\perp}G_1$

Depolarization Factors

Twist 3

Target Polarization

		U	${f L}$	${f T}$
ation	\mathbf{U}	$\begin{array}{c cccc} V & hH_1 & f_1\tilde{D} \\ f^{\perp}D_1 & h_1^{\perp}\tilde{H} \end{array}$		$f_T D_1 h_1 \tilde{H}$ $h_T H_1 g_{1T} \tilde{G}$ $h_T^{\perp} H f_T^{\perp} \tilde{D}$
Polarization		~	~	$h_T^{\perp} H_1 f_{1T}^{\perp} D$ $f_T^{\perp} D_1 h_{1T}^{\perp} \tilde{H}$
Beam	$oldsymbol{\mathbf{L}}$	$egin{aligned} m{W} & eH_1 & f_1 \hat{G} \ g^\perp D_1 & h_1^\perp ilde{E} \end{aligned}$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$
				$e_T^{\perp}H_1$ $f_{1T}^{\perp}\tilde{G}$ $g_T^{\perp}D_1$ $h_{1T}^{\perp}\tilde{E}$

Depolarization Factors

- Depolarization factors depend on (x,y,Q²)
- Asymmetry denominator:

$$\int d\sigma_{UU} \sim A$$

Depolarization Factors

	Twist 2	Twist 3
Unpolarized Beam	A, B	V
Longitudinal Beam	С	W

Asymmetry, for modulation
$$D \in \{A,B,C,V,W\}$$
 Structure Functions
$$A_{XY}^{M} \propto \frac{D_{XY}^{M}}{A} \cdot \frac{F_{XY}^{M}}{F_{UU,T}^{COnst} + \epsilon F_{UU,L}^{Const}}$$

Depolarization Factors

Twist 2

	Polarization	Depolarization
Boer-Mulders	UU	В
Sivers	UT	1
Transversity	UT	B/A
Kotzinian-Mulders	UL	B/A
Wormgear (LT)	LT	C/A
Helicity DiFF G₁ [⊥]	LU	C/A
Helicity DIFF 0 ₁	UL	1
e(x)	LU	W/A
h _L (x)	UL	V/A
g _T (x)	LT	W/A

Twist 3

Kinematic Coverage

51

Depolarization Factors

C. Dilks

Depolarization Factors

C. Dilks

Depolarization at CLAS

C. Dilks

CLAS Dihadron A_{III} Measurements for e(x)

Extraction of H₁ from Belle Data

Phys.Rev.D 85 (2012) 114023

 \rightarrow point-by-point extraction of e(x)

Phys.Rev.Lett. 126 (2021) 152501

Courtoy, Aurore, et al. e-Print: 2203.14975 [hep-ph]

Courtoy, Aurore – CPHI 2022

Dihadron Kinematics

$eN \to e + h_1(P_1) + h_2(P_2) + X$

Dihadrons:

momentum: $P_h = P_1 + P_2$

kinematics: M_h , z, p_T

angles: ϕ_h , ϕ_R , ϕ_S , θ

Inclusive:

$$x_B = \frac{Q^2}{2P \cdot q}, \quad y = \frac{P \cdot q}{P \cdot l}$$

$$\gamma = \frac{2Mx_B}{O}$$

Online 3D View:

https://c-dilks.github.io/dihadronAngleDefs/dihadronAngleDefs.html

SIDIS Dihadron Cross Section

$$\begin{split} \mathbf{d}\sigma_{UU} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \\ &\times \sum_{\ell=0}^{\ell_{\max}} \left\{ A(x,y) \sum_{m=0}^{\ell} \left[P_{\ell,m} \cos(m(\phi_h - \phi_{R_{\perp}})) \left(F_{UU,T}^{P_{\ell,m}} \cos(m(\phi_h - \phi_{R_{\perp}})) + \epsilon F_{UU,L}^{P_{\ell,m}} \cos(m(\phi_h - \phi_{R_{\perp}})) \right) \right] \\ &+ B(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((2-m)\phi_h + m\phi_{R_{\perp}}) F_{UU}^{P_{\ell,m}} \cos((2-m)\phi_h + m\phi_{R_{\perp}}) \\ &+ V(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_{\perp}}) F_{UU}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_{\perp}}) \right\}. \end{split}$$

$$\begin{split} d\sigma_{LU} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \lambda_e \\ \text{LU} &\quad \times \sum_{\ell=0}^{\ell_{\max}} \left\{ C(x,y) \sum_{m=1}^{\ell} \left[P_{\ell,m} \sin(m(\phi_h - \phi_{R_\perp})) 2 \left(F_{LU,T}^{P_{\ell,m} \cos(m(\phi_h - \phi_{R_\perp}))} + \epsilon F_{LU,L}^{P_{\ell,m} \cos(m(\phi_h - \phi_{R_\perp}))} \right) \right] \\ &\quad + W(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_\perp}) F_{LU}^{P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_\perp})} \right\}. \end{split}$$

$$\begin{split} d\sigma_{UL} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) S_L \\ &\times \left\{ A(x,y) \sum_{\ell=1}^{\ell_{\max}} \sum_{m=1}^{\ell} P_{\ell,m} \sin(-m\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin(-m\phi_h + m\phi_{R_\perp}) \right. \\ &+ B(x,y) \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin((2-m)\phi_h + m\phi_{R_\perp}) \\ &+ V(x,y) \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin((1-m)\phi_h + m\phi_{R_\perp}) \right\} . \end{split}$$

$$\begin{split} d\sigma_{LL} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \lambda_e S_L \\ &\times \sum_{\ell=0}^{\ell_{\rm max}} \left\{ C(x,y) \sum_{m=0}^{\ell} 2^{2-\delta_{m0}} P_{\ell,m} \cos(m(\phi_h - \phi_{R_\perp})) F_{LL}^{P_{\ell,m}} \cos(m(\phi_h - \phi_{R_\perp})) + W(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_\perp}) F_{LL}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_\perp}) \right\}. \end{split}$$

$$\begin{split} \mathbf{d}\sigma_{UT} &= \frac{\alpha^2}{4\pi xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) |S_{\perp}| \\ \mathbf{UT} &\times \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left\{ A(x,y) \left[P_{\ell,m} \sin((m+1)\phi_h - m\phi_{R_{\perp}} - \phi_S) \right) \right. \\ &\times \left(F_{UT,T}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_{R_{\perp}} - \phi_S)} + \epsilon F_{UT,L}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_{R_{\perp}} - \phi_S)} \right) \right] \\ &+ B(x,y) \left[P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_{\perp}} + \phi_S) F_{UT}^{P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_{\perp}} + \phi_S)} \right. \\ &+ P_{\ell,m} \sin((3-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) F_{UT}^{P_{\ell,m} \sin((3-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)} \right] \\ &+ V(x,y) \left[P_{\ell,m} \sin(-m\phi_h + m\phi_{R_{\perp}} + \phi_S) F_{UT}^{P_{\ell,m} \sin((-m\phi_h + m\phi_{R_{\perp}} + \phi_S)} \right. \\ &+ P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) F_{UT}^{P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)} \right] \right\}. \end{split}$$

$$d\sigma_{LT} = \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \lambda_e |S_\perp| \sum_{\ell=0}^{\max} \sum_{m=-\ell}^{\ell} \left\{ C(x, y) \, 2 \, P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_\perp} - \phi_S)) F_{LT}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_\perp} - \phi_S)) + W(x, y) \left[P_{\ell,m} \cos(-m\phi_h + m\phi_{R_\perp} + \phi_S) F_{LT}^{P_{\ell,m}} \cos(-m\phi_h + m\phi_{R_\perp} + \phi_S) + P_{\ell,m} \cos((2-m)\phi_h + m\phi_{R_\perp} - \phi_S) F_{LT}^{P_{\ell,m}} \cos((2-m)\phi_h + m\phi_{R_\perp} - \phi_S) \right] \right\}.$$

Phys.Rev.D 90 (2014) 11, 114027

SIDIS Cross Section

$$A_{UT} = \frac{d\sigma_{UT}}{d\sigma_{UU}} = \frac{d\sigma_{\uparrow} - d\sigma_{\downarrow}}{d\sigma}$$

General form of each term:

Dihadron Access to PDFs x DiFFs

Twist 2

Nucleon Polarization

u		U	L	Т
on Polarizatio	U	$f_1D_1 \\ h_1^{\perp}H_1$	$h_{1L}^{\perp}H_1$ $g_{1L}G_1$	$f_{1T}^{\perp}D_1$ $g_{1T}G_1$ h_1H_1 $h_{1T}^{\perp}H_1$
Electron	L	f_1G_1	$g_{1L}D_1$	$g_{1T}D_1$ $f_{1T}^{\perp}G_1$

Twist 3

Nucleon Polarization

		U	L	${f T}$
n Polarization	U	$hH_1 f_1\tilde{D}$ $f^{\perp}D_1 h_1^{\perp}\tilde{H}$	$\begin{array}{c cc} h_L H_1 & g_{1L} \tilde{G} \\ f_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{H} \end{array}$	$f_T D_1 h_1 \tilde{H}$ $h_T H_1 g_{1T} \tilde{G}$ $h_T^{\perp} H_1 f_{1T}^{\perp} \tilde{D}$ $f_T^{\perp} D_1 h_{1T}^{\perp} \tilde{H}$
Electron	L	$eH_1 f_1\tilde{G}$ $g^{\perp}D_1 h_1^{\perp}\tilde{E}$	$\begin{array}{ccc} e_L H_1 & g_{1L} \tilde{D} \\ g_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{E} \end{array}$	$g_T D_1 h_1 \tilde{E}$ $e_T H_1 g_{1T} \tilde{D}$ $e_T^{\perp} H_1 f_{1T}^{\perp} \tilde{G}$ $g_T^{\perp} D_1 h_{1T}^{\perp} \tilde{E}$

Even more from Dihadrons...

Vector Mesons: a significant fraction of dihadrons

$$\begin{array}{l} \rho \to \pi\pi \\ K^* \to \pi K \\ \phi \to K K \end{array}$$

Flavor-dependence of twist-3 PDFs

Proton Target

Deuteron Target

Channel dependence of DiFFs

Transverse Lambdas

Spontaneous Polarization:
$$P_{\Lambda} = \frac{F_{UT}^{\sin(\phi_S - \phi_{\Lambda})}}{F_{UU}}$$

Spin Transfer:
$$S_{\Lambda} = D(y) \, \frac{F_{TT}^{\cos(\varphi_S - \phi_S)}}{F_{UU}}$$

$$F_{XY}$$
 $X = \text{proton polarization}$
 $Y = \Lambda \text{ polarization}$

Accessible via $\cos\theta$ distribution of protons in $\Lambda \to p\pi$ $\frac{\mathrm{d}N_{\mathrm{p}(\bar{\mathrm{p}})}}{\mathrm{d}\cos\theta} \propto 1 + \alpha_{\Lambda(\bar{\Lambda})}P_{\Lambda(\bar{\Lambda})}\cos\theta$

$$F_{UU}\sim f^{q/p}\otimes D_1^{\Lambda/q}$$
 longitur $F_{UT}^{\sin(\phi_S-\phi_\Lambda)}\sim f^{q/p}\otimes D_{1T}^{\perp\Lambda/q}$ $F_{TT}^{\cos(arphi_S-\phi_S)}\sim h^{q/p}\otimes H_1^{\Lambda/q}$

Spontaneous Polarization Impact from ∧s in Jets

- → Measuring \(\Lambda \) in jets provides another probe for TMD FFs
- Distribution of hadrons relative to jet axis allows for decorrelation of TMD FFs and PDFs
- Impact on spontaneous polarization:
 - Bands: theoretical uncertainty
 - Error bars: projection from 100 fb⁻¹

Spin Transfer Impact from ∧s in Jets

- → Impact on spin transfer:
 - Bands: theoretical uncertainty
 - Error bars: projection from 100 fb⁻¹

