

A Precision Measurement of Inclusive gⁿ₂, dⁿ₂ with SoLID on a Polarized ³He Target at 8.8 and 11 GeV

A Run-Group Proposal in parallel to E12-10-006/E12-11-007

Ye Tian (Syracuse University) Chao Peng (Argonne National Laboratory) For the SoLID collaboration

- Physics Motivation
- Experiment
- Expected Results
- Summary

DIS2023 workshop

03/30/2023

This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and DE-FG02- 84ER40146. Acknowledgement to the entire SoLID collaboration, especially Jian- Ping Chen, Haiyan Gao, Zein-Eddine Meziani, Paul Souder, and Zhiwen Zhao

Inclusive Electron Scattering

 Q^2 :Four-momentum transfer

- x : Bjorken variable(= $Q^2/2Mv$)
- v: Energy transfer
- M : Nucleon mass
- W: Final state hadronic mass

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{Mott} \begin{bmatrix} \frac{1}{\nu} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \\ +\gamma g_1(x,Q^2) + \delta g_2(x,Q^2) \end{bmatrix}$$

spin dependent Structure Function

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = \frac{1}{2} \sum e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

 $\Box g_2 \text{ is zero in the naive parton model}$ number density of the quark carrying the fraction *x* of the momentum of the nucleon If constituent quarks to have an intrinsic transverse momentum in the nucleon non-zero value carries information of quark-gluon interaction Ignoring quark mass effect of order $O(m_q/\Lambda_{QCD})$

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + g_2(x,Q^2)$$

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = rac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

□ g_2 is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass e ect of order $O(m_q/\Lambda_{QCD})$ $uestimate{leading twi}$

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + g_2(x,Q^2)$$

• leading twist related to g_1 by Wandzura-Wilczek relation

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

related to amplitude for scattering off asymptotically free quarks

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = rac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

□ g_2 is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass e ect of order $O(m_q/\Lambda_{QCD})$ \sim leading twi

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + g_2(x,Q^2)$$

• leading twist related to g_1 by Wandzura-Wilczek relation

$$g_{2}^{WW}(x,Q^{2}) = -g_{1}(x,Q^{2}) + \int_{x}^{1} g_{1}(y,Q^{2}) \frac{dy}{y}$$
$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left[\frac{m_{q}}{M}h_{T}(y,Q^{2}) + \zeta(y,Q^{2})\right] \frac{dy}{y}$$

quark transverse momentum contribution

twist-3 part which arises from quarkgluon interactions

related to amplitude for scattering off asymptotically free quarks

quark-gluon interaction and the quark mass effects

d₂: twist-3 matrix element

d₂: the x² moment of $\overline{g}_2(x,Q^2)$, twist-3 matrix element Sensitive to large-x behavior $d_2(Q^2) = 3\int_0^1 x^2 [g_2(x,Q^2) - g_2^{WW}(x,Q^2)] dx$ $= \int_0^1 x^2 [2g_1(x,Q^2) + 3g_2(x,Q^2)] dx$

- \checkmark Dominated by high x data because of weighting
- ✓ Calculable on the Lattice.
- \checkmark A clean way to access twist-3 contribution

Existing Neutron g₂ Data

- First precise measurement of neutron g_2 from SLAC, averaged $Q^2 \approx 5 \text{ GeV}^2$
- Measurement form Jefferson Lab: E<6GeV
- The Hall C $d_2^n E_{12}$ -06-121, 0.2 < x < 0.95and $2.5 < Q^2 < 7$ GeV², SHMS and upgraded HMS with six kinematic settings.
- We propose to measure gⁿ₂ at x>0.1 and 1.5
 < Q² < 10 GeV², SoLID SIDIS ³He experiments.

Figure from arXiv:1603.03612v3

$^{3}\mathrm{He}$	$g_2^n,\!d_2^n,\!\Gamma_2^n$	$0.5 \le W \le 2.5 \; GeV$	$0.1 \le Q^2 \le 0.9$	JLAB E94–010 [29]
$^{3}\mathrm{He}$	g_2^n	x = 0.2	$0.57 \le Q^2 \le 1.34$	JLAB E97–103 [30]
³ He	$g_2^n,\!d_2^n$	x = 0.33, 0.47, 0.6	2.7, 3.5, 4.8	JLAB E99–117 [2]
³ He	g_2^n	x < 0.1	$0.035 \le Q^2 \le 0.24$	JLAB E97–110 [31]
³ He	g_2^n, d_2^n	$0.25 \le x \le 0.9$	3.21,4.32	JLAB E06–014 [14]
³ He	g_2^n, d_2^n	$0.55 \le x \le 0.9$	$0.7 \le Q^2 \le 4.0$	JLAB E01–012 [33]

Existing Neutron d₂ Data

Test the Burkhardt-Cottingham (BC) Sum Rule

$BC = Measured + low_x + Elastic$

Measured: Measured x-range low-*x*: refers to unmeasured low x part of the integral. Assume $g_2 = g_2^{WW}$ Elastic: From elastics form Factors

$$\Gamma_2 = \int_0^1 g_2(x) dx = 0$$

- Validity conditions:
- ✓ g_2 is well-behaved, $\Gamma 2$ is finite
- ✓ g_2 is not singular at $x_{Bj} = 0$
- It is verified from world data at 0<Q² <5 GeV²
- Elastic and the inelastic contributions to the twist moment of g₂ cancel for low and moderate Q²

This proposal will extract g_2 within x > 0.1 and provide an opportunity to further explore the large x contributions to this sum rule for the neutron.

SoLID SIDIS Polarized ³He Experiments

- SoLID SIDIS layout without changes
- E12-10-006: Transversely polarized ³He target
- E12-11-007: Longitudinally polarized ³He target
- High in-beam polarization $\sim 60\%$
- Two Beam energies: 11 GeV and 8.8 GeV
- Polarized luminosity with 15uA current: $1e^{36} \text{ cm}^{-2}\text{s}^{-1}$

Kinematic Coverage

- More than 15 kHz free trigger space with 100 kHz DAQ limit
- Dedicated single electron trigger rate: 103 kHz/10 = 10.3 kHz
- Reusable random coincidence trigger rate: 69 kHz

Extraction of g_2

Systematic Error Estimation

Source	Systematic Uncertainty				
Cross Sections					
Detector acceptance	5.0%				
Detector efficiencies	3.0%				
Target density	2.0%				
Beam charge	1.0%				
Background subtraction	3.0%				
Asymmetries					
Dilution effects	< 1.0%				
Beam polarization	< 2.0%				
Target polarization	3.0%				
Charge asymmetry	$< 10^{-4}$				
Pion asymmetry	$< 5 imes 10^{-4}$				
Unfolding Procedure					
Nuclear corrections	$\sim 5.0\%$				
Radiative corrections	$\sim 3.0\%$				
Physics Results					
Cross sections	< 10.0%				
g_2 syst.	$\sim 10^{-3} 10^{-4}$				
d_2 stat.	$\sim 3 imes 10^{-4}$				
d_2 syst. (11 GeV)	$\sim 5 imes 10^{-4}$				
d_2 syst. (8.8 GeV)	$\sim 8 imes 10^{-4}$				

Projections: x^2g_2 @ 8.8 GeV

55% target polarization, 85% beam polarization, and 0.17 nitrogen dilution

 F2 from New Muon Collaboration (NMC) parameterization

$$R = g_1^n / F_1^n$$
 from SLAC

- Errors:
 - error bars ---- statistic errors
- shadow regions--- systematic error

Projections: x^2g_2 @ 11 GeV

55% target polarization, 85% beam polarization, and 0.17 nitrogen dilution

Projections: d₂

Summary

- ➤ We propose a parasitic measurement with SoLID-SIDIS 3 He experiments E12-10-006 and E12-11-007 to extract neutron g₂ at x>0.1 and 1.5<Q²<10 GeV², and d₂ at Q²<6.5 GeV²
- The proposed dataset provides an opportunity to better understand the twist-3 matrix element $d_2^n(Q^2)$ and hence the associated quarkgluon correlations inside a bound hadron.
- Q² dependence of dⁿ₂, with much smaller error bar than any existing phenomenological extractions, will provide a direct test of Lattice QCD calculations.

Back up

Expected Event Rates

Rate (kHz) Ecal 7 modules	EC+LGC+SPD 3He+up+ down widow	SIDIS-3He E12-10-006				
FA e⁻	59+1.15+1.8	48 days 11 GeV				
FA hadron no e⁻	28.6+ <mark>3.9+5.6</mark>	$\begin{bmatrix} 21 \text{ days } 8.8 \text{ GeV} \\ \textbf{DAO limit} \end{bmatrix}$				
LA e ⁻	4.1+ <mark>3.6+2.6</mark>	100kHz				
LA hadron no e-	7.7+ <mark>6.5+3.8</mark>	Coincident trigger				
FA MIP (hadron)	8013+2591+ <mark>3887</mark>	20 - 30% fluctuation				
trigger		>15kHz				
SIDIS coincidence	31.2					
Hadron coincidence	14.7+2.52+2.61=19/83	Free prescaled				
Total rate	<85 kHz	single electron				
FA+LA single electron trigger rate: 103kHz 10=10.3KHz Projection Reusable random coincidence trigger rate:						

54kHz+15kHz=69kHz, which is equivalent to 103kHz/2

Kinematic Coverage

- Generated inclusive QE+resonance+DIS events: The W<3 GeV Peter Bosted fit The W>3 GeV world PDF sets
- GEMC+detector acceptance+detector efficiency 11GeV beam

Measure neutron spin structure function g₂ (x, Q²) at momentum transfer 1.5<Q²<10 GeV² and Bjorken x >0.1. For Q² > 8.5 GeV², we will measure the x > 0.6 region.

Extract g₂ from Cross Section Differences

Physics Motivation: g_2^n spin structure function

- ✓ Calculable on the Lattice.
- ✓ A clean way to access twist-3 contribution
- Dominated by high x data because of weighting