$\mathrm{H}_{\mathrm{C}} \mathrm{C}$

Diffraction at LHeC and FCC-eh

Anna Staśto

م PennState
Eberly College of Science

DIS2023, March 30, 2023

Outline

- Introduction: LHeC and FCC-eh parameters and kinematics
- Inclusive diffraction: cross sections
- Prospects for extraction of diffractive PDFs
- Inclusive diffraction in eA
- Exclusive diffraction: elastic vector meson production

LHeC Conceptual Design Report and beyond

CDR 2012: commissioned by
CERN, ECFA, NuPECC
200 authors, 69 institutions

Further selected references:

On the relation of the LHeC and the LHC arXiv:1211.5102

The Large Hadron Electron Collider arXiv:1305.2090

Dig Deeper
Nature Physics 9 (2013) 448

Future Deep Inelastic Scattering with the LHeC arXiv:1802.04317
arXiv:2007.14491

Accelerator concepts for electron-proton collisions

$50 \times 7000 \mathrm{GeV}^{2}$: 1.2 TeV ep collider
Operation: 2035+, Cost: O(1) BCHF

CDR: 1206.2913 J.Phys.G (550 citations)
Upgrade to $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, for Higgs, BSM
CERN-ACC-Note-2018-0084 (ESSP)
arXiv:2007.14491, subm J.Phys.G

LHeC, PERLE and FCC-eh

Powerful ERL for Experiments @ Orsay CDR: 1705.08783 J.Phys.G
CERN-ACC-Note-2018-0086 (ESSP)
Operation: 2025+, Cost: O(20) MEuro
LHeC ERL Parameters and Configuration $\mathrm{I}_{\mathrm{e}}=20 \mathrm{~mA}, 802 \mathrm{MHz} \mathrm{SRF}, 3$ turns \rightarrow
$\mathrm{E}_{\mathrm{e}}=500 \mathrm{MeV} \rightarrow$ first 10 MW ERL facility

BINP, CERN, Daresbury, Jlab, Liverpool, Orsay (IJC), +

$60 \times 50000 \mathrm{GeV}^{2}$: 3.5 TeV ep collider
Operation: 2050+, Cost (of ep) O(1-2) BCHF
Concurrent Operation with FCC-hh

FCC CDR:

Eur.Phys.J.ST 228 (2019) 6, 474 Physics Eur.Phys.J.ST 228 (2019) 4, 755 FCC-hh/eh

Future CERN Colliders: 1810.13022 Bordry +

Physics with Energy Frontier DIS

ep/eA collider: cleanest high resolution microscope
Precision and discovery in QCD

Study of EW physics, multi-jet final states
Transform the LHC/FCC into a high precision Higgs facility
Unique and complementary potential for the BSM studies
Empower the LHC/FCC search programme
Overall: a unique Particle and Nuclear Physics Facility

What is Diffraction?

- Diffractive processes are characterized by the rapidity gap: absence of any activity in part of the detector.
- Diffraction is interpreted as to be mediated by the exchange of an 'object' with vacuum quantum numbers - usually referred to as the Pomeron.

HERA: 10% events diffractive: rapidity gap

Importance of diffraction for :
small x dynamics
shadowing
confinement,
soft and collinear factorization

Diffractive event in ZEUS at HERA

Diffractive kinematics in DIS

Standard DIS variables:

electron-proton inelasticity
cms energy squared:

$$
s=(k+p)^{2}
$$

$$
y=\frac{p \cdot q}{p \cdot k}
$$

photon-proton
cms energy squared:

$$
W^{2}=(q+p)^{2}
$$

Bjorken x
$x=\frac{-q^{2}}{2 p \cdot q}$
(minus) photon virtuality $Q^{2}=-q^{2}$

Diffractive DIS variables:

$$
\begin{aligned}
& \xi \equiv x_{I P}=\frac{Q^{2}+M_{X}^{2}-t}{Q^{2}+W^{2}} \\
& \beta=\frac{Q^{2}}{Q^{2}+M_{X}^{2}-t} \\
& t=\left(p-p^{\prime}\right)^{2}
\end{aligned}
$$

momentum fraction of the Pomeron w.r.t hadron
momentum fraction of parton w.r.t Pomeron

4-momentum transfer squared

Phase space ($\mathrm{x}, \mathrm{Q}^{2}$) EIC-HERA-LHeC-FCC-eh

$$
E_{e}=60 \mathrm{GeV}
$$

- $E_{p}=7 \mathrm{TeV}$ vs. HERA
- $x_{\text {min }}$ down by factor ~ 20
- $Q_{\text {max }}^{2}$ up by factor ~100
- $E_{p}=50 \mathrm{TeV}$ vs. 7 TeV
- $x_{\text {min }}$ down by factor ~ 10
- $Q_{\text {max }}^{2}$ up by factor ~ 10

Prospects for LHeC and FCC-eh:
Low ξ : cleanly separate diffraction
Low β : novel low x effects
High Q^{2} : lever-arm for gluon, flavor decomposition. Tests of DGLAP evolution
Large M_{x} : diffractive jets, heavy flavors, W/Z
Large E_{T} : Precision QCD with jets

LHeC phase space: (β, Q^{2}) fixed ξ

FCC-eh phase space: $\left(\beta, Q^{2}\right)$ fixed ξ

Pseudodata for $0_{\text {red }}$

Simulations based on extrapolation of ZEUS-SJ DPDFs
Variable Flavor Number scheme without top
Binning to assume negligible statistical errors
5% systematic error, dominates the total error
Potential for high quality data for inclusive diffraction at LHeC/FCC-eh

Prospects for precise extraction of diffractive PDFs, tests of factorization breaking (collinear and soft)

Only small subset of simulated data is shown

LHeC

FCC-eh

β

Diffractive PDFs from LHeC pseudodata

Diffractive PDFs from FCC-he pseudodata

Diffractive quark PDF

A,B,C denote fits to different pseudodata replicas

Relative uncertainties for LHeC and FCC-eh

LHeC

FCC-eh
(note reduction of scale)

Reduction of DPDF uncertainty by factor $5-7$ at LHeC and $10-15$ at FCC-eh with inclusive data alone. Small sensitivity to the large ξ cut
Prospects for precise extraction of diffractive PDFs, tests of factorization breaking (collinear and soft)

Inclusive diffraction on nuclei

Reduced cross section from Frankfurt, Guzey, Strikman model

Pseudodata simulated under the same assumptions: 5% systematics, conservative luminosity $2 \mathrm{fb}^{-1}$

High precision data would allow to extract the nuclear DPDFs with similar accuracy to the proton case

Inclusive diffraction on nuclei: nuclear ratio

$Q^{2}=10 \mathrm{GeV}^{2} \quad$ Frankfurt, Guzey, Strikman model

$$
R_{k}^{A}\left(\beta, \xi, Q^{2}\right)=\frac{F_{k, A}^{D(3)}\left(\beta, \xi, Q^{2}\right)}{A F_{k, p}^{D(3)}\left(\beta, \xi, Q^{2}\right)}
$$

Predictions for nuclear ratios for diffractive structure functions F_{2} and F_{L}

LHeC and FCC-eh could extract these quantities for the first time

Elastic diffraction of vector mesons: LHeC

Advantage over UPC: Q^{2} dependence

Precision t, W and Q^{2} dependence of vector mesons Example : tests of saturation from the slope in t

One of the best processes to test for novel small x dynamics

Elastic diffraction of vector mesons: FCC-he

Dips move to lower $|t|$ with higher energy
Boundary between dilute and dense region moves to large impact parameters
Could be explored at FCC-he

Exclusive diffraction on nuclei

Possibility of using the same principle to learn about the gluon distribution in the nucleus. Possible nuclear resonances at small t?

t-dependence: characteristic dips.
Challenges: need to distinguish between coherent and incoherent diffraction. Need dedicated instrumentation, zero degree calorimeter.

Energy dependence for different targets.

Exclusive diffraction on nuclei

Energy and scale dependence of the position of dips in $|t|$. Provides information about nuclear structure. Can perform similar measurements on proton target to estimate the saturation in proton vs nuclei. Challenging experimentally.

Summary

- LHeC and FCC-eh are electron-proton facilities which represent seminal opportunity to advance particle physics
- Broad physics potential: QCD studies, both precision and discovery, precision Higgs and EW, expand prospects for BSM, physics with nuclei
- New possibilities for diffraction at LHeC and FCC-he:
- Inclusive diffraction, constraints on diffractive PDFs, increased accuracy by factor 10 at LHeC and 20 at FCC-eh
- New final states in diffraction, possibility of producing diffractive top. Also EW exchange. Relation between diffraction and shadowing
- First extraction of diffractive nuclear PDFs would be possible
- Exclusive diffraction, vector meson production, t-dependence provides information about the spatial structure. Also DVCS

