

Diffraction at LHeC and FCC-eh

Anna Stasto

Outline

- Introduction: LHeC and FCC-eh parameters and kinematics
- Inclusive diffraction: cross sections
- Prospects for extraction of diffractive PDFs
- Inclusive diffraction in eA
- Exclusive diffraction: elastic vector meson production

LHeC Conceptual Design Report and beyond

CDR 2012: commissioned by CERN, ECFA, NuPECC 200 authors, 69 institutions

Journal of Physics G
Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN
Report on the Physics and Design Concepts for Machine and Detector
LHeC Study Group

arXiv:1206.2913

iopscience.org/jphysg
IOP Publishing

Further selected references:

On the relation of the LHeC and the LHC

arXiv:1211.5102

The Large Hadron Electron Collider

arXiv:1305.2090

Dig Deeper

Nature Physics 9 (2013) 448

Future Deep Inelastic Scattering with the LHeC

arXiv:1802.04317

CDR update 2020 300 authors, 156 institutions

arXiv:1206.2913

arXiv:2007.14491

Accelerator concepts for electron-proton collisions

50 x 7000 GeV2: 1.2 TeV ep collider

Operation: 2035+, Cost: O(1) BCHF

CDR: 1206.2913 J.Phys.G (550 citations)

Upgrade to 10³⁴ cm⁻²s⁻¹, for Higgs, BSM

CERN-ACC-Note-2018-0084 (ESSP)

arXiv:2007.14491, subm J.Phys.G

LHeC, PERLE and FCC-eh

Powerful ERL for Experiments @ Orsay CDR: 1705.08783 J.Phys.G CERN-ACC-Note-2018-0086 (ESSP)

Operation: 2025+, Cost: O(20) MEuro

LHeC ERL Parameters and Configuration I_e =20mA, 802 MHz SRF, 3 turns \rightarrow E_e =500 MeV \rightarrow first 10 MW ERL facility

BINP, CERN, Daresbury, Jlab, Liverpool, Orsay (IJC), +

60 x 50000 GeV²: 3.5 TeV ep collider

Operation: 2050+, Cost (of ep) O(1-2) BCHF

Concurrent Operation with FCC-hh

FCC CDR:

Eur.Phys.J.ST 228 (2019) 6, 474 Physics Eur.Phys.J.ST 228 (2019) 4, 755 FCC-hh/eh

Future CERN Colliders: 1810.13022 Bordry+

Physics with Energy Frontier DIS

ep/eA collider: cleanest high resolution microscope

Precision and discovery in QCD

Study of EW physics, multi-jet final states

Transform the LHC/FCC into a high precision Higgs facility

Unique and complementary potential for the BSM studies

Empower the LHC/FCC search programme

Overall: a unique Particle and Nuclear Physics Facility

What is Diffraction?

- Diffractive processes are characterized by the rapidity gap: absence of any activity in part of the detector.
- Diffraction is interpreted as to be mediated by the exchange of an 'object' with vacuum quantum numbers usually referred to as the **Pomeron**.

HERA: 10% events diffractive: rapidity gap

Importance of diffraction for:

small x dynamics

shadowing

confinement,

soft and collinear factorization

Diffractive event in ZEUS at HERA

Diffractive kinematics in DIS

Standard DIS variables:

electron-proton cms energy squared:

$$s = (k+p)^2$$

photon-proton cms energy squared:

$$W^2 = (q+p)^2$$

inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$

$$x = \frac{-q^2}{2p \cdot q}$$

(minus) photon virtuality $Q^2 = -q^2$

Diffractive DIS variables:

$$x = \xi \beta$$

$$\xi \equiv x_{IP} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$

$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

$$t = (p - p')^2$$

momentum fraction of the Pomeron w.r.t hadron

momentum fraction of parton w.r.t Pomeron

4-momentum transfer squared

Phase space (x,Q²) EIC-HERA-LHeC-FCC-eh

$E_e = 60 \text{ GeV}$

- $E_p = 7 \text{ TeV vs. HERA}$
 - $-x_{\min}$ down by factor ~20
 - $-Q_{\rm max}^2$ up by factor ~100
- $E_p = 50 \text{ TeV vs. } 7 \text{ TeV}$
 - x_{\min} down by factor ~10
 - $-Q_{\rm max}^2$ up by factor ~10

Prospects for LHeC and FCC-eh:

Low ξ: cleanly separate diffraction

Low β **:** novel low x effects

High Q2: lever-arm for gluon, flavor decomposition. Tests of DGLAP evolution

Large M_x: diffractive jets, heavy flavors, W/Z

Large E_T: Precision QCD with jets

LHeC phase space: (β ,Q²) fixed ξ

FCC-eh phase space: (β ,Q²) fixed ξ

Pseudodata for σ_{red}

Simulations based on extrapolation of ZEUS-SJ DPDFs

Variable Flavor Number scheme without top

Binning to assume negligible statistical errors

5% systematic error, dominates the total error

Potential for high quality data for inclusive diffraction at LHeC/FCC-eh

Prospects for precise extraction of diffractive PDFs, tests of factorization breaking (collinear and soft)

Only small subset of simulated data is shown

Diffractive PDFs from LHeC pseudodata

Diffractive PDFs from FCC-he pseudodata

Relative uncertainties for LHeC and FCC-eh

Reduction of DPDF uncertainty by factor 5 — 7 at LHeC and 10 — 15 at FCC-eh with inclusive data alone. Small sensitivity to the large ξ cut

Prospects for precise extraction of diffractive PDFs, tests of factorization breaking (collinear and soft)

Inclusive diffraction on nuclei

Reduced cross section from Frankfurt, Guzey, Strikman model

Pseudodata simulated under the same assumptions: 5% systematics, conservative luminosity 2 fb-1

High precision data would allow to extract the nuclear DPDFs with similar accuracy to the proton case

Inclusive diffraction on nuclei: nuclear ratio

$$Q^2=10~{
m GeV}^2$$
 Frankfurt, Guzey, Strikman model

$$R_k^A(\beta, \xi, Q^2) = \frac{F_{k,A}^{D(3)}(\beta, \xi, Q^2)}{AF_{k,p}^{D(3)}(\beta, \xi, Q^2)}$$

Predictions for nuclear ratios for diffractive structure functions F_2 and F_L

LHeC and FCC-eh could extract these quantities for the first time

Elastic diffraction of vector mesons: LHeC

Precision t, W and Q² dependence of vector mesons Example : tests of saturation from the slope in t One of the best processes to test for novel small *x* dynamics

Elastic diffraction of vector mesons: FCC-he

Dips move to lower |t| with higher energy

Boundary between dilute and dense region moves to large impact parameters

Could be explored at FCC-he

Exclusive diffraction on nuclei

Possibility of using the same principle to learn about the gluon distribution in the nucleus. Possible nuclear resonances at small t?

t-dependence: characteristic dips.

Challenges: need to distinguish between coherent and incoherent diffraction. Need dedicated instrumentation, zero degree calorimeter.

Energy dependence for different targets.

Exclusive diffraction on nuclei

Energy and scale dependence of the position of dips in |t|. Provides information about nuclear structure. Can perform similar measurements on proton target to estimate the saturation in proton vs nuclei. Challenging experimentally.

Summary

- LHeC and FCC-eh are electron-proton facilities which represent seminal opportunity to advance particle physics
- Broad physics potential: QCD studies, both precision and discovery, precision Higgs and EW, expand prospects for BSM, physics with nuclei
- New possibilities for diffraction at LHeC and FCC-he:
 - Inclusive diffraction, constraints on diffractive PDFs, increased accuracy by factor 10 at LHeC and 20 at FCC-eh
 - New final states in diffraction, possibility of producing diffractive top. Also EW exchange. Relation between diffraction and shadowing
 - First extraction of diffractive nuclear PDFs would be possible
 - Exclusive diffraction, vector meson production, t-dependence provides information about the spatial structure. Also DVCS