

Jack Holligan ${ }^{\mathbf{1 , 2}}$, Xiang Gao ${ }^{3}$, Yong Zhao ${ }^{3}$, Andrew Hanlon ${ }^{4}$, Nikhil Karthik ${ }^{5}$, Swagato Mukherjee ${ }^{4}$, Peter Petreczky ${ }^{4}$, Sergey Syritsyn ${ }^{4,6}$.
${ }^{1}$ University of Maryland. ${ }^{2}$ Michigan State University. ${ }^{3}$ Argonne National Lab.
30 th March 2023
${ }^{4}$ Brookhaven National Lab. ${ }^{5}$ American Physical Society. ${ }^{6}$ Stony Brook University.

OUTLINE

- Brief summary of large-momentum effective theory (LaMET).
- Parton distribution functions (PDFs).
- Calculation:
- Renormalization.
- Extrapolation to infinite distance.
- Matching to the lightcone.
- Results.
- Conclusion.

LARGE-MOMENTUM EFFECTIVE THEORY

Quasi matrix element

Matrix element

See, also, Yong Zhao's talk from Altarelli Prize Ceremony. 3/27 14:00.

${ }^{1}$ X. Gao et. al. Phys. Rev. Lett. 128, 142003.
${ }^{2}$ X. Gao et al. arXiv:2212.12569.

UNPOLARIZED PDF

- Unpolarized pdf:

$$
f(x)= \begin{cases}f_{u}(x)-f_{d}(x) & x>0 \\ f_{\bar{d}}(x)-f_{\bar{u}}(x) & x<0\end{cases}
$$

- This was computed for the pion in 2021^{1} using the method of LaMET.
- We apply the same method to the proton ${ }^{2}$.

UNPOLARIZED PROTON PDF

- I applied the method of LaMET to compute the proton PDF.
- Process involves:

Renormalize

Fourier
Transform

Lightcone Matching

- The method of a deep-neural-network was used independently and the results were compared.
- See Andrew Hanlon's talk: Thursday 3/30 15:00-15:20.

RENORMALIZHTION

- Self energy of the Wilson line \rightarrow linear divergence. Independent of external state.
- Handle the short-distance (UV) and longdistance (IR) behaviour separately.
- Use the hybrid renormalization scheme ${ }^{1}$ in the same way as was computed in the pion case^{2}.

HYBRID RENORMALIZATION

- In lattice regularization, we renormalize a bare operator O_{Γ}^{B} via

$$
O_{\Gamma}^{B}(z, a)=e^{-\delta m(a)|z|} Z_{O}(a) O_{\Gamma}^{R}(z)
$$

- The $\delta m(a)$ term includes the linear divergence as well as the renormalon ambiguity. Can be computed from the interquark potential ${ }^{1,2}$:

$$
\delta m(a)=\frac{m_{-1}(a)}{a}+m_{0}
$$

- The m_{0} term is scheme-dependent.

HYBRID RENORMALIZATION

- The data at short distances ($z \leq 0.2 \mathrm{fm}$) must agree with the operator product expansion (OPE):

$$
\begin{aligned}
& \qquad h\left(z, P_{z}\right)=\sum_{n=0}^{\infty} \frac{\left(-i z P_{z}\right)^{n}}{n!} C_{n}\left(z^{2} \mu^{2}\right)\left\langle x^{n}\right\rangle(\mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right) \\
& \text { Wattice data } \quad \text { Wilson coefficients Mellin moments }
\end{aligned}
$$

- At $P_{z}=0$, only $n=0$ terms contribute:

$$
h(z, 0)=C_{0}\left(z^{2} \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)
$$

HYBRID RENORMALIZATION

- Accounting for the scheme-conversion, linear divergence and using the OPE at $P_{z}=0$:

- $C_{0}\left(z^{2} \mu^{2}\right)$ can be computed "by hand".
- The terms $\left(\bar{m}_{0}, \Lambda\right)$ are fitting parameters.
- Can fit the data to $P_{z}=0$ Wilson coefficients since δm and the fitting parameters are independent of the external states.
- $a \delta m(a)=0.1597(16)^{1}$

HYBRID RENORMALIZATION

- Define $\lambda=z P_{z}, N=\frac{h^{B}(0,0, a)}{h^{B}\left(0, P_{z}, a\right)}$ and $\delta m^{\prime}=\delta m+\bar{m}_{0}$.
- Ratio scheme at short distances. Remove self-energy at large distances.
- $\tilde{h}^{R}\left(z, z_{s}, \mu, P_{z}\right)=$

$$
\begin{aligned}
& N \frac{\tilde{h}^{B}\left(z, P_{z}, a\right)}{\tilde{h}^{B}(z, a)} \frac{C_{0}^{c}\left(z^{2} \mu^{2}\right)-\Lambda z^{2}}{C_{0}\left(z^{2} \mu^{2}\right)} \theta\left(z_{s}-z\right)+ \\
& N e^{\delta m^{\prime}\left(z-z_{s}\right)} \frac{\tilde{h}^{B}\left(z, P_{2}, a\right)}{\tilde{h}^{B}\left(z_{s}, 0, a\right)} \frac{c_{0}\left(z_{s}^{2} \mu^{2}\right)-\Lambda z_{s}^{2}}{c_{0}\left(z_{s}^{2} \mu^{2}\right)} \theta\left(z-z_{s}\right)
\end{aligned}
$$

LARGE- λ EXTRAPOLATION

- To transform to momentum space, we require an extrapolation of \tilde{h}^{R} to $\lambda \rightarrow \infty$.

$$
\tilde{f}\left(x, P_{z}\right)=\int_{-\infty}^{\infty} \frac{d \lambda}{2 \pi} e^{i \lambda x} \tilde{h}^{R}\left(\lambda, P_{z}\right)
$$

- $\tilde{h}^{R}\left(\lambda, P_{z}\right) \rightarrow \frac{A e^{-m \lambda / P_{z}}}{\left.|\lambda|\right|^{d}}$ as $\lambda \rightarrow \infty$ for both \Re and \mathfrak{J}. Fitting parameters are A, m and d.
- Constrain $m>0.1 \mathrm{GeV}$ to ensure suppression at large λ.

LARCE- λ EXTRAPOLATTON

- Real and imaginary parts are each fitted separately to the extrapolation model derived from HQET.

$$
\frac{A e^{-m \lambda / P_{z}}}{|\lambda|^{d}}
$$

- Green shaded area are the points used for curve-fitting.
- Choice of z-values is delicate.

LIGHTCONE MATCHING

- The quasi-PDF is related to the lightcone PDF by

$$
\tilde{f}\left(x, P_{z}\right)=\int_{-1}^{1} \frac{d y}{|y|} \mathcal{C}\left(\frac{x}{y}, \frac{\mu}{y P_{z}},|y| \lambda_{s}\right) f(x, \mu)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{x^{2}(1-x) P_{z}^{2}}\right)
$$

- We introduce the shorthand

$$
\tilde{f}=\mathcal{C} \otimes f+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{x^{2}(1-x) P_{Z}^{2}}\right)
$$

LiChTCONE MATCHING

- The matching kernel can be expanded in α_{s} :

$$
\mathcal{C}\left(\frac{x}{y}, \frac{\mu}{y P_{z}},|y| \lambda_{s}\right)=\delta\left(\frac{x}{y}-1\right)+\sum_{n=1}^{\infty} \alpha_{s}^{n} \mathcal{C}^{(n)}\left(\frac{x}{y}, \frac{\mu}{y P_{z}},|y| \lambda_{s}\right)
$$

and the inverse as

$$
\begin{gathered}
\mathcal{C}^{-1}\left(\frac{x}{y}, \frac{\mu}{y P_{z}},|z| \lambda_{s}\right)=\delta\left(\frac{x}{y}-1\right)-\alpha_{s} \mathcal{C}^{(1)}\left(\frac{x}{y}, \frac{\mu}{y P_{z}},|y| \lambda_{s}\right) \\
+\alpha_{s}^{2} \mathcal{C}^{(1)}\left(\frac{x}{z}, \frac{\mu}{z P_{z}},|z| \lambda_{s}\right) \otimes \mathcal{C}^{(1)}\left(\frac{z}{y}, \frac{\mu}{y P_{z}},|y| \lambda_{s}\right)-\alpha_{s}^{2} \mathcal{C}^{(2)}\left(\frac{x}{y}, \frac{\mu}{y P_{z}},|z| \lambda_{s}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)
\end{gathered}
$$

RESULTS

- Comparison of PDF as computed with LaMET, DNN and global analysis from NNPDF4.0 ${ }^{1}$.
- The gray regions are those in which the LaMET expansion breaks down.
- $f(x, \mu)=\mathcal{C}^{-1}\left(\frac{x}{y}\right) \otimes \tilde{f}(y)+$ $\mathcal{O}\left(\frac{\Lambda_{C C D}^{2}}{x^{2}(1-x) P_{Z}^{2}}\right)$.

THANK YOU.

(LC)PDP FOR DIFFERENT P_{z}

- No clear convergence.
- Source of disagreement between DNN and NNPDF40?

PARTON PHYSICS

- Real time dependence. Lattice is Euclidean.
- Cannot impose lightcone gauge: $A_{3}+i A_{4}=0$.
- How can we extract parton physics from lattice?

