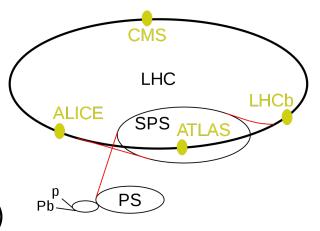
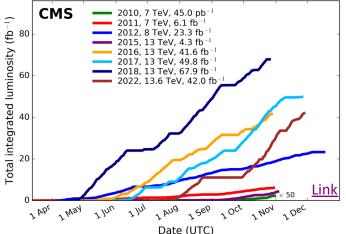

CMS detector: Run 3 status and plans for Phase 2

Srećko Morović
On behalf of the CMS Collaboration

DIS 2023 29. 03. 2023.





Introduction

- LHC Run 2 completed in 2018 → start of Long Shutdown (LS2)
 - Upgrade of LHC and main experiments
- LHC operation restarted in 2022 with Run 3
 - Proton-proton collision energy 13.6 TeV
 - Target: collect above the total luminosity collected previously (nearly 170 fb⁻¹)
 - Increased average instantaneous luminosity (and pileup) from Run 2 (~ 2*10 34 cm²/s)
- After 2025 LS3 and High-Luminosity LHC
 - Phase-2 CMS upgrades

2021 2022 2023 2024 2025 2026 2027 2028 2029 JFMAMJJASONDJFMAMJASONDJFMAMJASONDJFMAMJASONDJFMAMJATATATATATATATATATATATATATATATATATAT									
Run 3 Long Shutdown 3 (LS3) 2030 2031 2032 2033 2034 2035 2036 2037 2038 JFMAMJ JASOND JFMAMJ JASO	2021	2022	2023	2024	2025	2026	2027	2028	2029
2030 2031 2032 2033 2034 2035 2036 2037 2038 JFMAMJJASONDJFMAMJ	J FMAM J J ASOND	JFMAMJJASOND	J FMAM J J A SOND	J FMAM J J A SOND	J FMAM J J A SOND	J FMAMJ J ASOND	J FMAMJ J ASOND	J FMAMJ J ASOND	J FMAM J J A SOND
JEMAMJ JASOND									
Run 4 LS4 Run 5									
Last updated: January 2022									

Run 3 CMS detector upgrades in a nutshell

CMS DETECTOR LS2 UPGRADES

Phase-1 (LS1 \rightarrow Run 2 \rightarrow LS2) highlights:

 Inner (Silicon Pixel) Tracker replacement, L1-Trigger and HCAL upgrade

Phase-2 upgrades

 Upgrade programme for the HL-LHC (discussed later...)

Many upgrade and refurbishment tasks performed in in LS2

BEAM PIPE

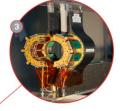
Replaced with an entirely new one compatible with the future tracker upgrade for HL-LHC, improving the vacuum and reducing activation.

PPS

new Totem T2 track det, Roman Pot upgrade

HADRON CALORIMETER

New on-detector electronics installed to reduce noise and improve energy measurement in the calorimeter.


SOLENOID MAGNET

New powering system to prevent full power cycles in the event of powering problems, saving valuable time for physics during collisions and extending the magnet lifetime.

PIXEL TRACKER

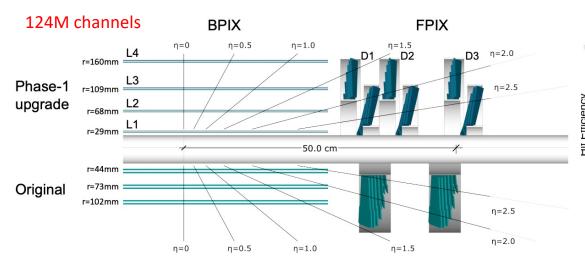
All-new innermost barrel pixel layer, in addition to maintenance and repair work and other upgrades.

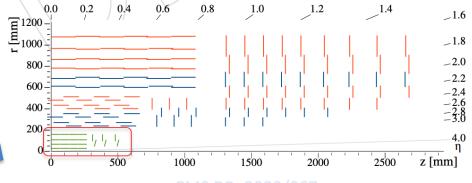
RRII

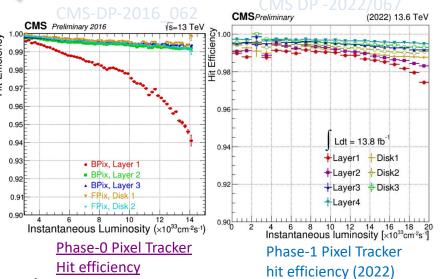
New generation of detectors for monitoring LHC beam conditions and luminosity.

CATHODE STRIP CHAMBERS (CSC)

Read-out electronics upgraded on all the 180 CSC muon chambers allowing performance to be maintained in HL-LHC conditions.


An entire new station of detectors installed in the endcap-muon system to provide precise muon tracking despite higher particle rates of HL-LHC.

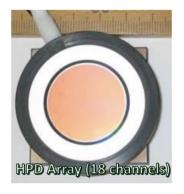

https://home.cern/press/2022/CMS-upgrades-LS2

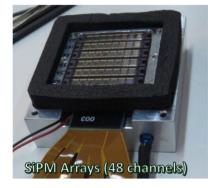

Inner Tracker Phase-1 upgrade

JINST 16 (2021) P02027

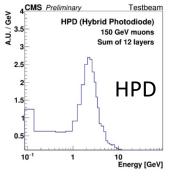
- Phase 1 Si-Pixel tracker upgrade in 2017
 - Additional layer, front-end electronics upgrade

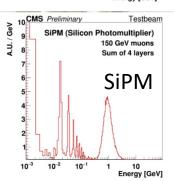
- Refurbished in LS2:
 - Layer 1 replaced due to radiation ageing (collected 120 fb⁻¹ in Run 2)
 - Upgraded on-detector electronics for the first layer:
 - Fixed issues with readout synchronization, noise shielding and radiation resistance

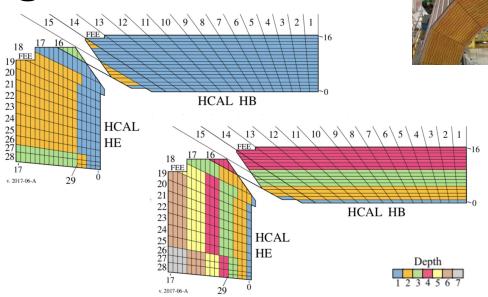

HCAL Phase-1 upgrade


CMS-TDR-010

- Upgraded photodetectors and readout electronics
 - Increased longitudinal segmentation 2x to 4x
 - Completed with HCAL Barrel upgrade in LS2
 - Hybrid Photo Diodes (HPDs) → Silicon photomultipliers (SiPM) sensors


Improved photon sensitivity, spectrum resolution, high radiation


resistance



- Readout electronics upgrade
 - Increased readout granularity and redundance
 - Improved data quality to Level-1 trigger

HCAL segmentation in Run 2 (top-left and Run 3 (bottom)

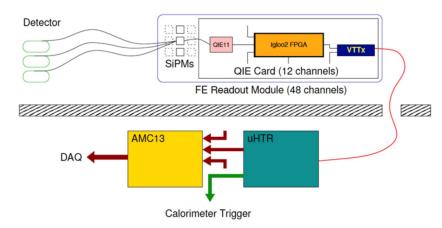
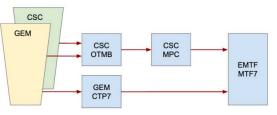
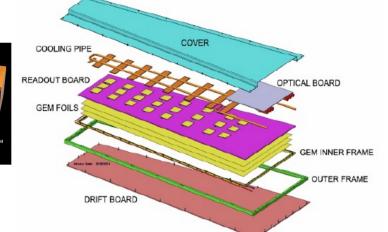
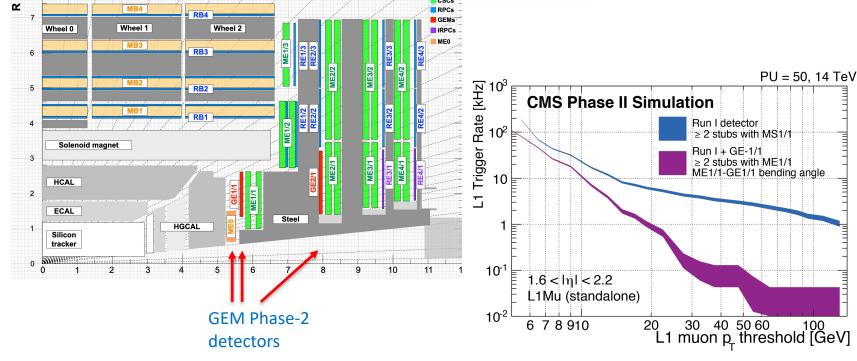



Diagram of the upgraded HB/HE readout chain

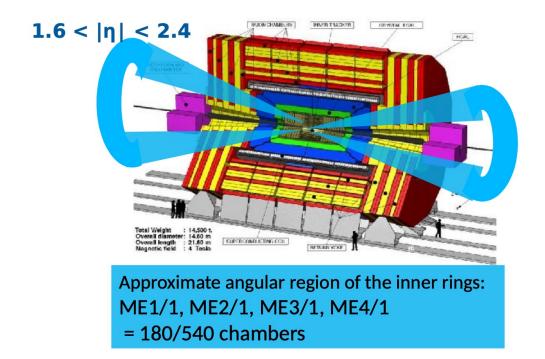

Muon system – Gas Electron Multiplier Chambers (GEM)

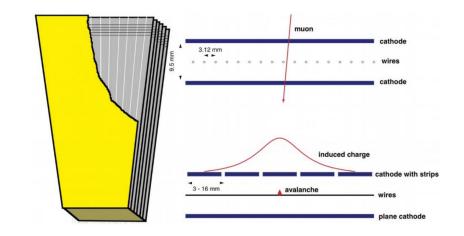

- GEM advantages
 - High-rate capability, adequate pattern recognition and radiation tolerance
- Staged Phase-2 upgrade
- GE/1 ring in endcap was installed in LS2
 - First of the upgrades on the road to Phase-2
 - Detector electronics ready for high-rate and radiation conditions
 - Integration with the Muon L1-Trigger

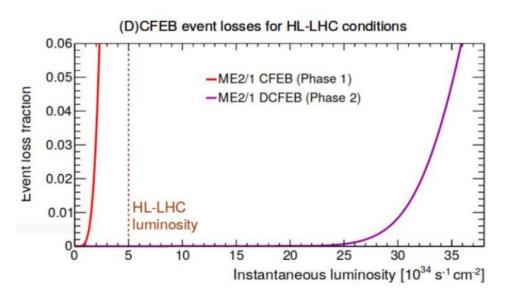


L1-Trigger Endcap muon track-finder

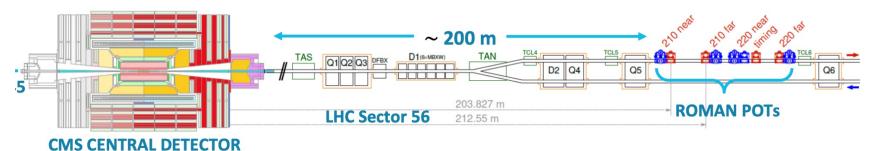
Primary Indication Indication

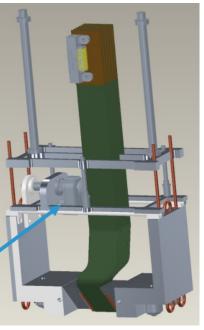






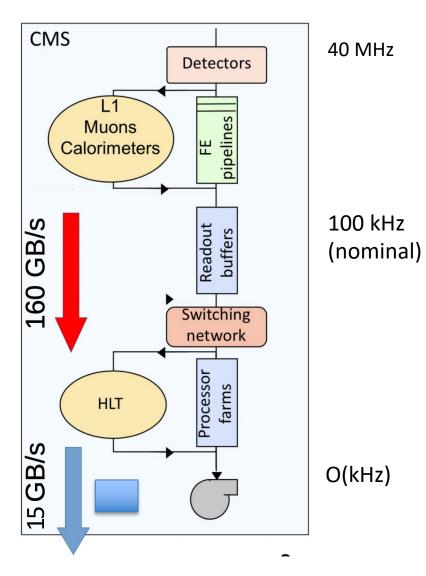
Muon system – Cathode Strip Chamber (CSC)


- Detector electronics replaced for the inner CSC rings
 - Ready for Phase-2 (opportunity in LS2)
 - Latency (12.5 μs) and L1 rate (750 kHz)
 - Improved radiation hardness / tolerance
 - Upgraded for 180 chambers


Precision Proton Spectrometer (PPS) in Run 3

- Designed for measuring scattered protons in forward regions of CMS in standard LHC running
 - pp -> pXp processes (X = high ET jets, gg, ZZ, W...)
 - Tracking detectors: LHC magnets used to measure proton momentum
 - Timing detectors (disentangling pileup)

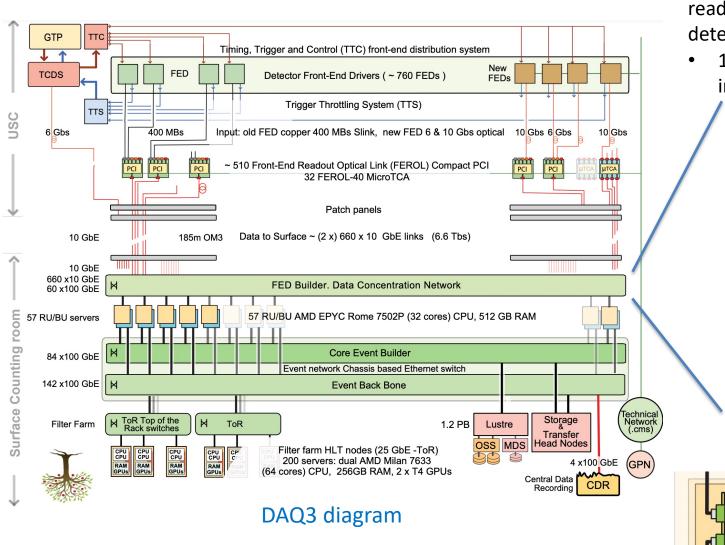
- Run 3:
 - New tracker system in Run 3:
 - 3D silicon pixel sensors movable to distribute radiation damage
 - Timing system
 - upgraded electronics and double diamond sensors (< 30ps resolution)



Run 3 requirements for Trigger and Data Acquisition (DAQ)

Requirements similar to Run 2

	Run 1	Run 2	Run 3
L1 accept rate	100 kHz	100 kHz	100 kHz or above
Event size *	1 MB	1.4 MB	1.6 MB **
HLT output rate (pp)	up to 1 kHz	O(1) kHz	O(5) kHz prompt and parking
HLT computing power (MHS06)	~0.21	~0.72	0.65 (+ GPUs)
HLT output bandwidth	2 GB/s	3 - 6 GB/s	8 (pp) – 15 (HI) GB/s

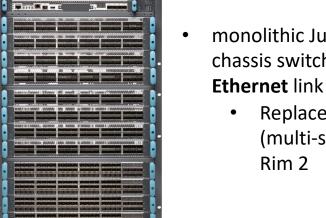

Increased trigger-accept rate for heavy-ion (PbPb) run

^{*} raw, uncompressed size, estimate at pileup 56

^{**}Increased mostly due to upgraded HCAL and GEM in Run 3

DAQ Data Concentrator in Run 3

readout of L1-Trigger accepted (100 kHz) event *fragments* from detector electronics (*sources*)


• 10 → 100 Gbit network to transport data to the surface

installations

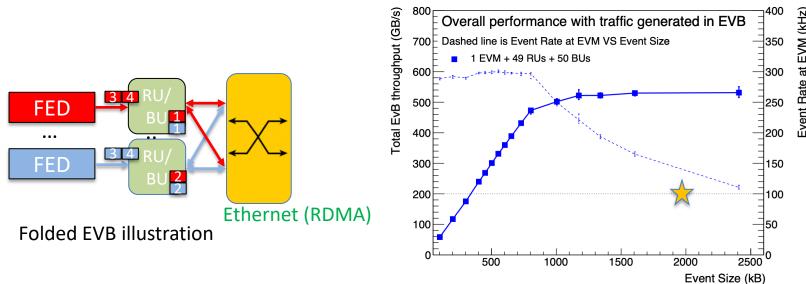
RU/BU

Readout PCs – RU/BUs

100 GbE

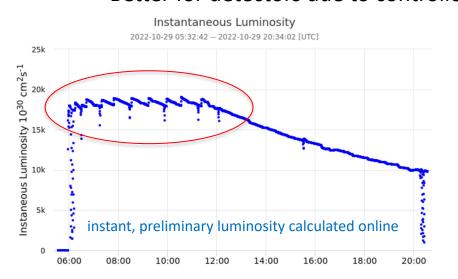
100 GbE

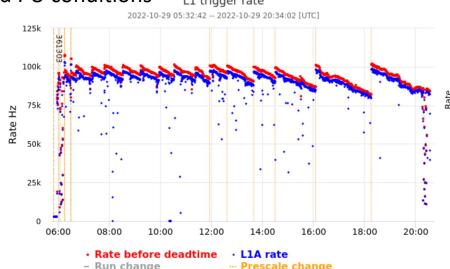
- monolithic Juniper QFX10016 chassis switch up to 100 Gb/s Ethernet link speed
 - Replaces 40 Gbit Ethernet (multi-switch) network fro, Rim 2

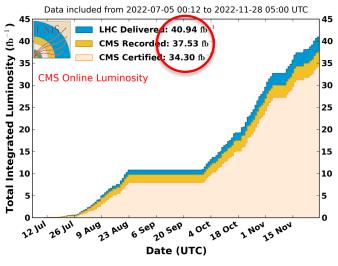

Zen2 AMD 'Rome' architecture (32 core) 3 x 100 Gb Ethernet (2x Mellanox ConnectX-6)

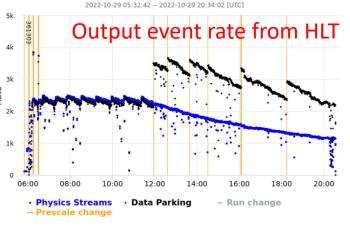
DAQ Event Building in Run 3

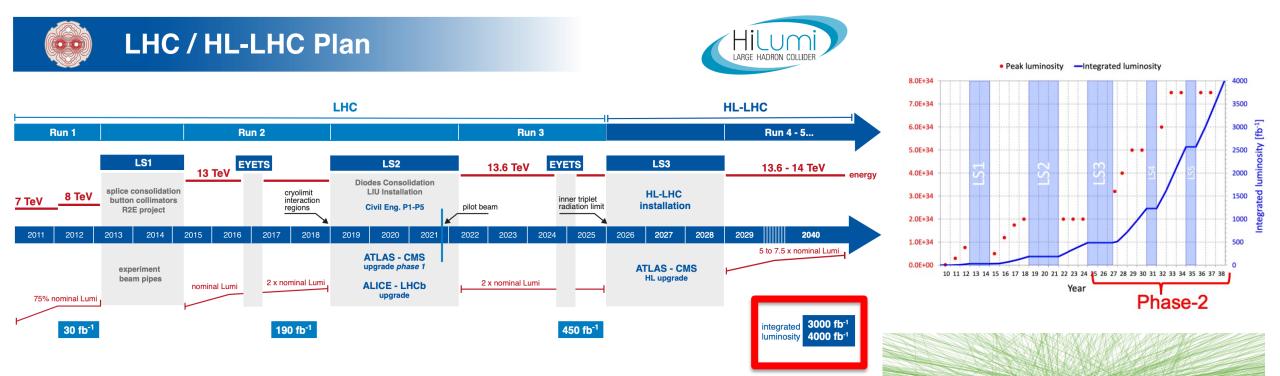
- Building complete events from scattered readout
- Run 3: 100 Gbit Ethernet with remote DMA (RoCE v2) replaces Infiniband network (Run 2)
 - Using 2nd chassis based switch (Juniper) → serving also HLT and Storage and Transfer System (Event Backbone Network)
- Folded event-building:
 - Advantage bidirectional use of network links
 - More demanding on individual PC CPU and I/O performance


Fully cabled Run 3 EvB and Event Backbone switch


CMS Integrated Luminosity, pp, 2022, $\sqrt{\mathbf{s}}=$ 13.6 TeV

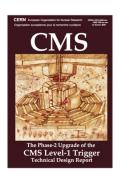

Operations in 2022


- July 5th to November 28th Run 3 proton-proton physics run at sqrt(s)=13.6 TeV ⁴⁵
 - 41 fb⁻¹ delivered by LHC
 - Various short special runs, including high-pileup and heavy ion (PbPb) test run
- Efficient operation of CMS
 - 37.5 fb⁻¹ recorded by CMS 91.7% efficiency
 - After the initial, commissioning phase, good data quality (~ 95%)
- LHC beam parameters controlled to level luminosity at constant rate for several hours in every proton-proton fill
 - Mitigates LHC heat load limitations at higher intensity



Plots from the Online Monitoring system (OMS)

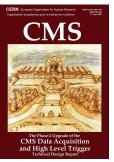
High-Luminosity LHC (Phase-2)


Aim: collection of large amount of collision data, up to 4000 fb⁻¹

- Physics motivation: SM, Higgs coupling, SUSY, DM searches...
- New paradigms for HEP experiments to fully exploit HL-LHC **luminosity**
 - Upgraded as well as fully new designed detectors to cope with increased occupancy and radiation
 - detector electronics, Trigger and DAQ upgrades to handle increased event size and L1-trigger rate

140 PU event display			
$\mathcal L$	〈PU〉	Vertex Density	$\int \mathcal{L}$ / year
$5 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$	140	0.8/mm	$250{ m fb}^{-1}$

	$\mathcal L$	〈PU〉	Vertex Density	$\int \mathcal{L}$ / year
Baseline	$5 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$	140	$0.8/\mathrm{mm}$	$250\mathrm{fb}^{-1}$
Ultimate	$7.5 \cdot 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	200	1.2/ mm	$> 300 \mathrm{fb}^{-1}$

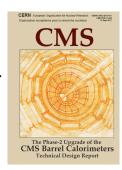

CMS HL-LHC Upgrades

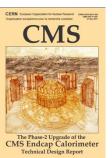
L1-Trigger

https://cds.cern.ch/record/2714892

- Tracks in L1-Trigger at 40 MHz
- Particle Flow selection
- 750 kHz L1 output
- 40 MHz data scouting

DAQ & High-Level Trigger

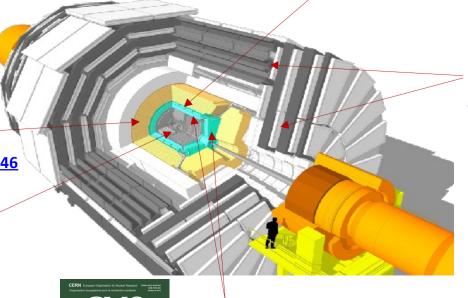

https://cds.cern.ch/record/2759072


- Full optical readout
- Heterogenous architecture
- 60 TB/s event network
- 7.5 kHz HLT output

Barrel Calorimeters

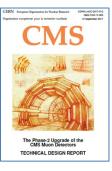
https://cds.cern.ch/record/2283187

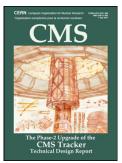
- ECAL single crystal granularity at L1 trigger with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards



Calorimeter Endcap

https://cds.cern.ch/record/2293646

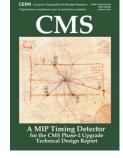

- · 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS



Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < n < 2.4
- Extended coverage to $\eta \simeq 3$

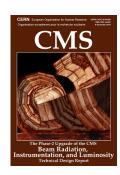


Tracker

https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

MIP Timing Detector

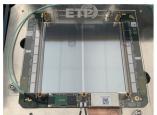

https://cds.cern.ch/record/2667167

Precision timing with:

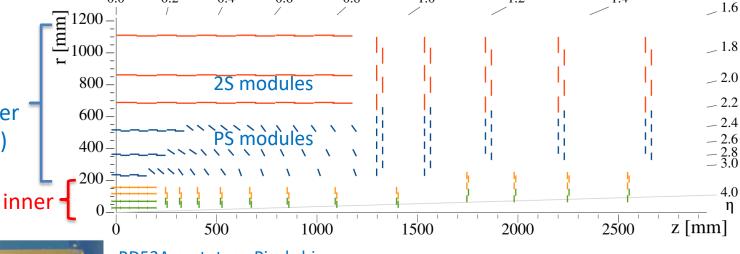
- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

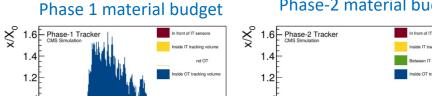
- Beam abort & timing
- · Beam-induced background
- Bunch-by-bunch luminosity:
 1% offline, 2% online
- Neutron and mixed-field radiation monitors



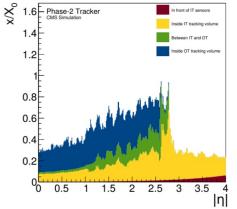
Inner and Outer Tracker Phase-2 upgrade

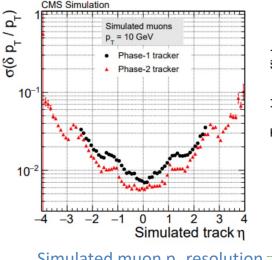

- Full replacement of inner and outer tracker detector
- Due to increased particle density with high PU → higher detector granularity outer
 - 20x more channels than in Phase-1
- Improved radiation hardness and reduced material budget
- Coverage increased to $\eta = 4$

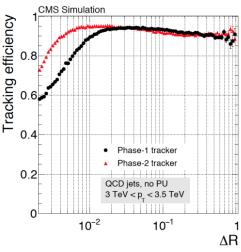
OT PS (strip-strip) module – 2.5cm x 100μm strips & 1.5mm x 100 µm MacroPixels



Outer Tracker 2S (strip-strip) module prototype – 5 cm x 90μm strips

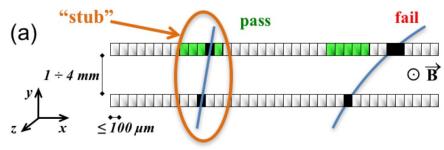


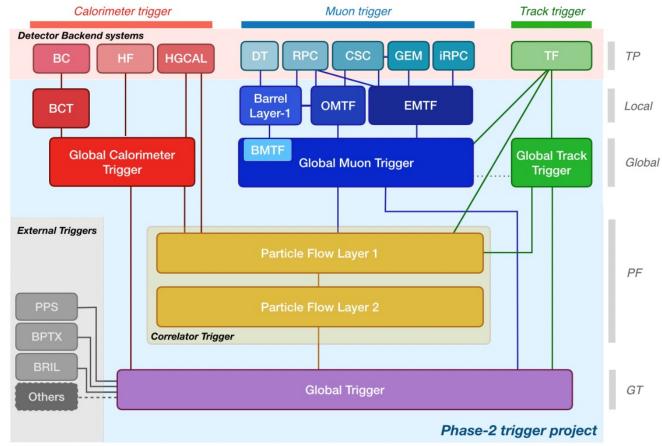

RD53A prototype Pixel chip - CMS will use 25x100μm (3D or planar sensors)



1 1.5 2 2.5

(OT)

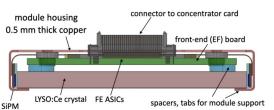


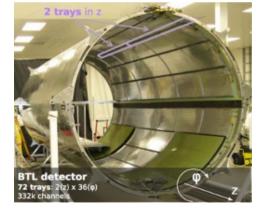

Simulated muon p_⊤ resolution

Level-1 Trigger Phase-2 upgrade

- 750 kHz L1-accept (readout) rate from the detector from the 40 MHz collision rate
- 12 μs latency budget for decision on event accept or discard
- New Track-trigger for the Outer tracker (OT)
 - Separation of high and low transverse momentum charged tracks, $p_T > 2$ GeV, in Tracker pT modules (trig. primitive filtering in PS and 2S)
 - FPGA-based parallelized track-finding: O(15k) stubs per
 PU 200 event

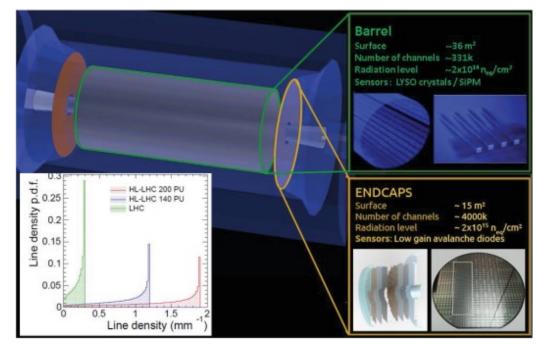
- High-precision calorimetry, vertex finding, displaced muons
- Particle flow in Correlator Trigger
 - application of an algorithm building a global event description in firmware

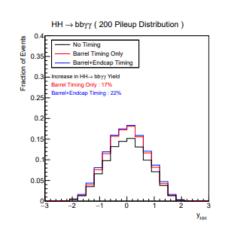


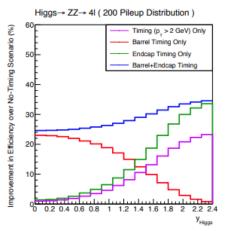

- 40 MHz L1-scouting system
 - Readout of trigger-primitives and trigger data, storing for analysis
 - Demonstration system in Run 3

MIP Timing Detector - MTD

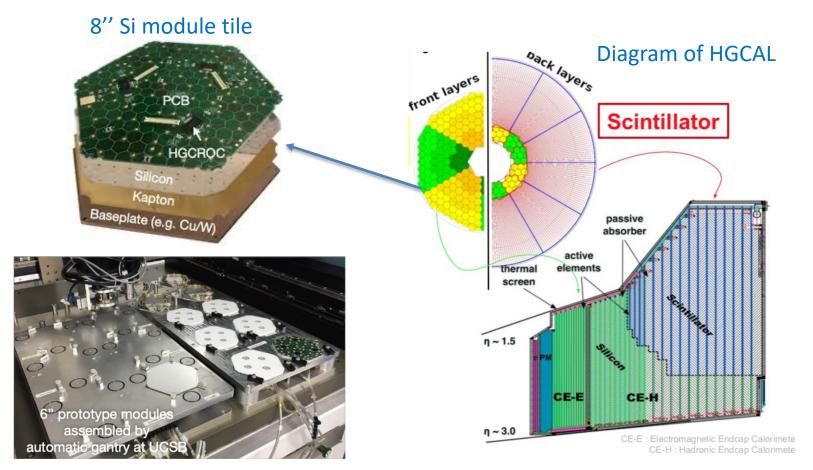

Timing detector located between tracker and calorimeters

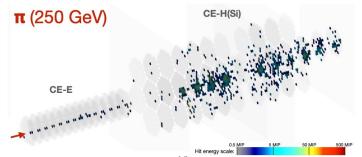


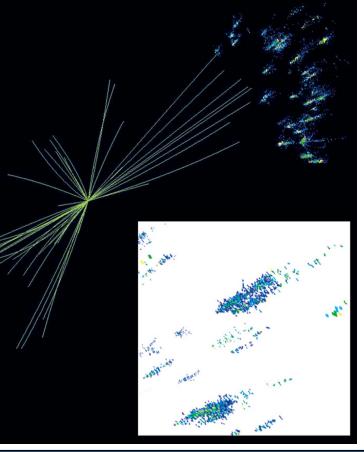




- precise measurement of production time of MIP particles → disentangle PU interactions (beam-spot spread ~ 180 ps)
- Improved performance of b-jet indentification and missing p_T measurement
- Enhanced capability of searches for long-lived particles

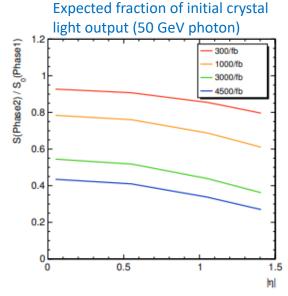






High Granularity Calorimeter - HGCAL

- Radiation-tolerant imaging **Endcap** calorimeter
 - Replaces existing Pre-shower, ECAL and HCAL (due to end-of-life radiation, trigger latency...)
 - 5D (spatial, energy, precision-timing) measurement of shower shape
 - participates in triggering
 - 6.5 million channels: silicon cells (0.5-1cm2) and tiles (4-32 cm) readout by SiPMs



ECAL Barrel Phase-2 upgrade

- Refurbishment of existing barrel supermodules
 - PbWO3 crystals long lifetime in radiation conditions
- New on-detector electronics and readout
 - Single-crystal trigger-primitive generation
 - Increased buffers for larger 12μs L1-accept latency and 750 kHz readout rate
 - improved timing and noise filtering, and reoptimized APD pulse shaping

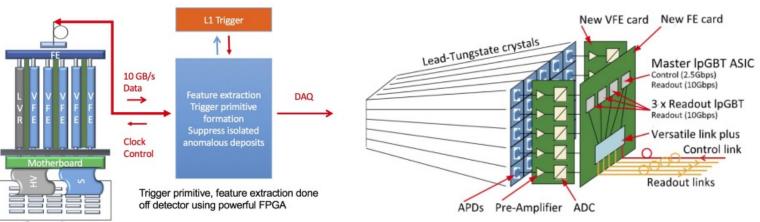


Figure 1.5: Schematic of the upgrade EB electronics architecture.

Figure 1.4: Block diagram describing the upgrade EB electronics architecture.

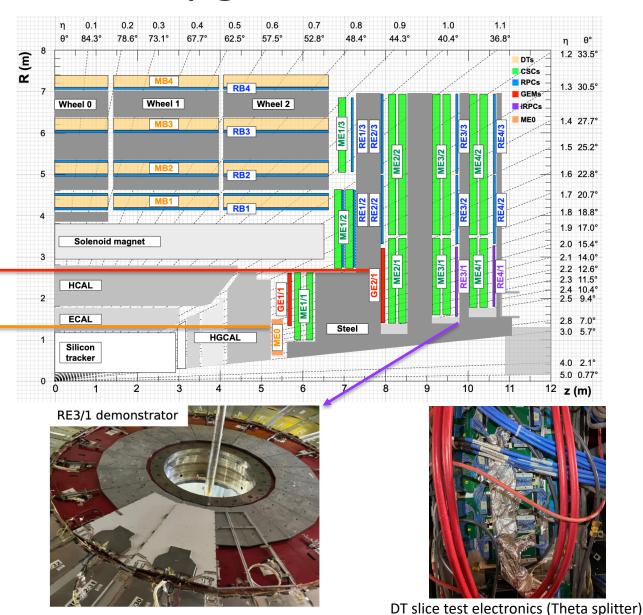
Refurbished spare ECAL barre supermodule

November 2022 electron test beam Pedestal mean, RMS and pulse shape as expected and consistent over all channels

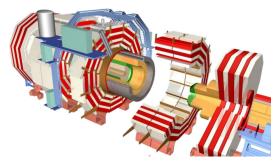
Muon system Phase-2 upgrades

- Existing DT, CSC, RPC detector upgrade electronics
 - For HL-LHC high-rate readout, latency requirements and improved performance
 - the DT readout electronics upgrade (ongoing slice test) improved time resolution
 - the legacy RPC system readout electronics upgrade adding better time estimation, providing a sub-bunch-crossing time window of 1.56 ns
- New detectors in the forward region
 - Improved geometrical acceptance for muons
- New GEM detectors

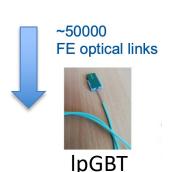
- ME0 – 6-layer triple-GEM detectos at $|\eta|$ = 2.4 - 2.8 Capable of high hit rate



- GE 1/1 2 layers installed in LS2
- GE 2/2 demonstrator installed in LS2


Improved Resistive Plate Chambers (iRPC)

- Redesigned for high background in HL-LHC conditions at high-η
- Improved hit rate and time and spatial resolution
- Demonstrator installed in LS2

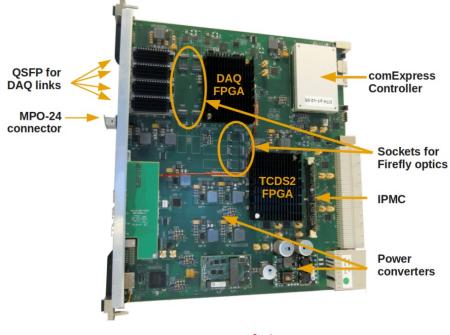


Phase 2 Readout and DAQ interface

Front end radiation-hard electronics

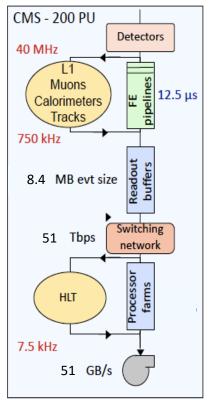
40 MHz trigger primitive
750 kHz fullevent readout
(~ 8 MB/ event)

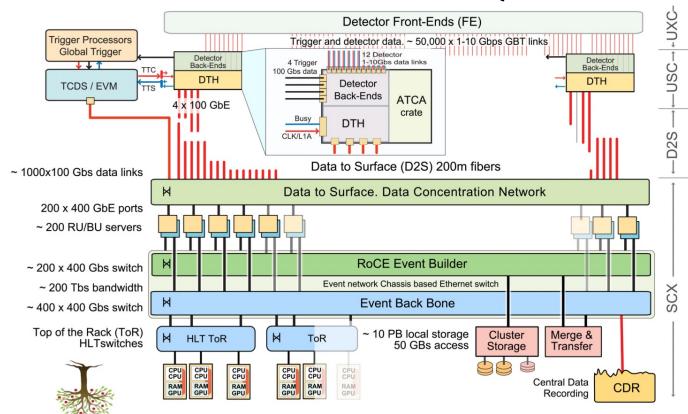
ATCA modular electronics


To L1 Trigger

To L1 Trigger

To L2 x Daq & Trigger Concentrator (DTC)


Day & TTC Hub (DTH)

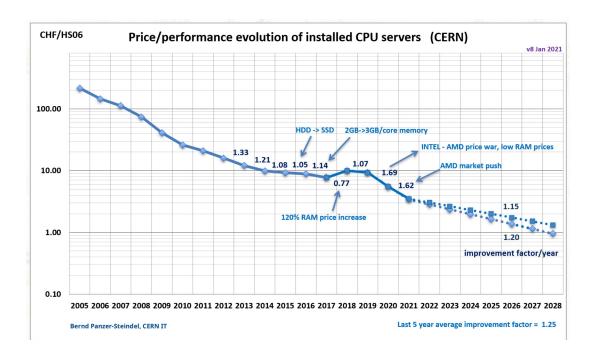

- DAQ and Trigger Hub (DTH)
 - Custom ATCA board for high-bandwidth readout
 - 2x Xilinx FPGA and HBM memory
 - Input: Firefly 100 Gbps inputs (4x or 8x)
 - Output: 100 Gb/s Ethernet (4x or 8x) to
 DAQ data concentrator data-to-surface
 - Precise clock distribution
 - installed in ATCA crate with detectorbackend electronics

v2 prototype of the DTH-400 board

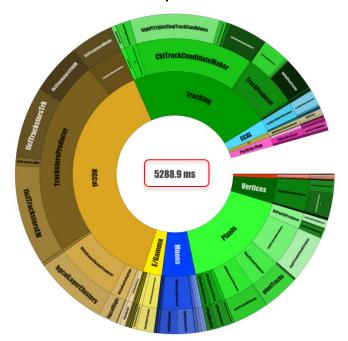
Phase-2 evolution of CMS DAQ

- DAQ Phase-2 reaquirements compared to Run 3
 - 7.5x L1 rate, 4x event size \rightarrow 30x readout bandwidth
- Aiming to achieve by scaling up current DAQ architecture, taking advantage of hardware evolution
 - 400 Gbps Ethernet (or equivalent) and new gen. computers for I/O

Orbit building


- In place of the event-building
- 11 kHz orbit rate in DAQ
- · Events from an orbit will be built in HLT nodes

Phase 2 HLT requirements


Large challenge

- Estimated 50x computing power increase (for Run-5) with current approach
 - Due to high pileup, L1-rate and increased requirements reconstructing upgraded and new detectors (mainly Tracker and HGCAL)

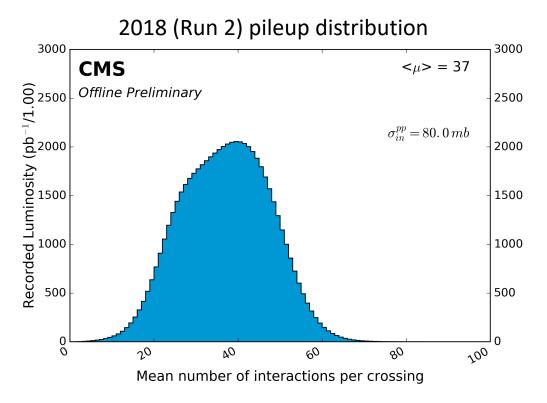
Strategy:

- Technology evolution of CPUs (cost reduction)
- Coprocessors (GPUs)
 - Assuming similar price/performance evolution
 - Goal: adapt up to 80% HLT code (processing time) to GPU algorithms
- Algorithmic improvements, optimizations and quality improvements in development

Measurement of Phase-2 event reconstruction time on MC-simulated events

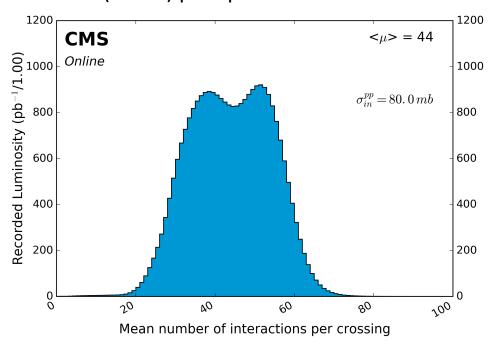
Conclusion


- Extensive upgrade program in LS2 was completed
 - Upgraded and refurbished systems were commissioned in first half of 2022
 - Successful first year of Run 3 with 37.5 fb⁻¹ recorded by CMS
 - 34 fb⁻¹ certified for the physics analysis
 - Overall efficient operation of LHC and CMS in this period
- HL-LHC upgrade program
 - Large R&D effort in progress withing the CMS Collaboration on the upgrade
 - Advancing from final engineering and prototyping into production phase
 - Software reconstruction development in preparation for running with new and upgraded detectors


BACKUP

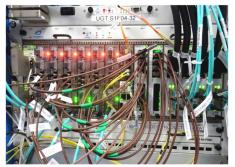
Compact Muon Solenoid (CMS)

Compact Muon Solenoid


- ~ 30 MHz collision rate for proton bunches (25 ns spacing → 40 MHz)
- 2-stage filtering of collision records: Level 1 (hardware) and Level 2
 software

https://cern.ch/cmslumi/publicplots/2018/pileup_pp_2018_800 00_Normtag.png

2022 (Run 3) pileup distribution

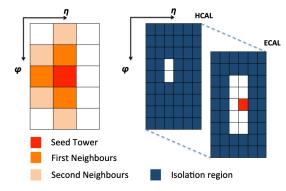
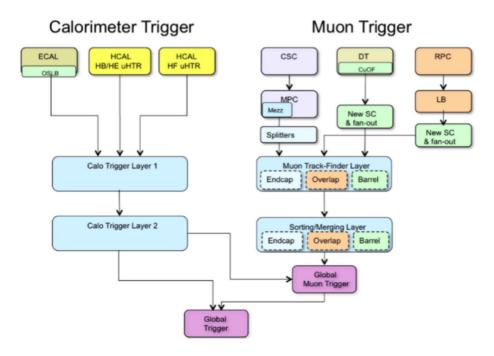


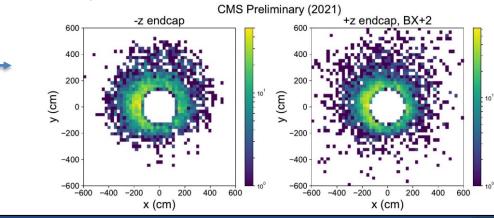
https://cmslumi.web.cern.ch/publicplots/2022/pileup_pp_2022_80000_Normtag.png

Level-1 Trigger in Run 3

N. Dev et al 2017 JINST 12 C02014

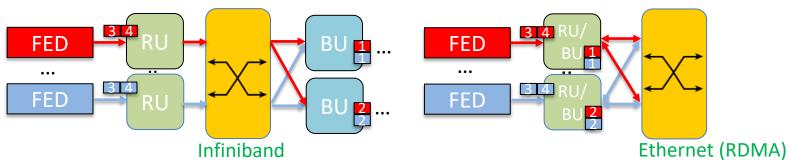
- Phase-1 Trigger upgrade in use since Run 2 (2016)
 - New electronics (μTCA standard)
 - Improved performance at increased pileup and luminosity
 - Full-granularity of calorimeter exploited
 - Combining muon detector information early in the chain (improving efficiency and rate reduction)
 - Supporting more sophisticated algorithms

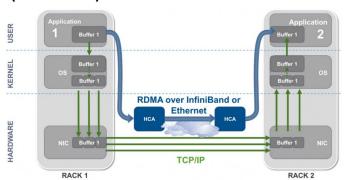



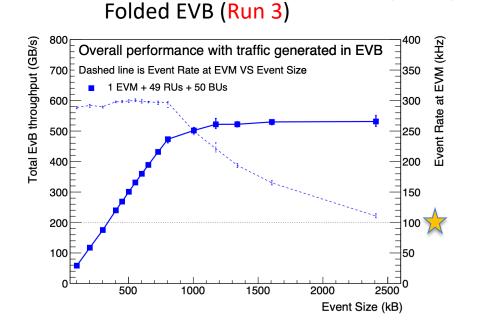

Illustration of L1 calorimeter clustering and hadronic isolation region

• L1-scouting

- Reading L1-trigger data at the full bunch-crossing rate (passively) from the L1 system
- Output saved to storage for analysis
- Physics at the bunch-crossing rate → search for rare processes & difficult to trigger signatures at L1-Trigger resolution
- A demonstration system in Run 3 for the Phase-2 upgrade


Early results with beams: beam halo muons

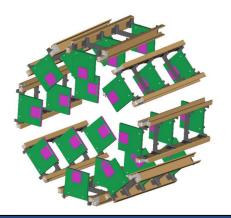

Core Event Building

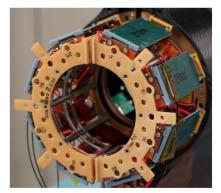

- Scattered detector readout → complete-event payloads
- Run 3 DAQ evolution folded event-building (EvB)
 - Advantage: bidirectional use of network links
 - But more demanding on individual PC CPU and I/O performance

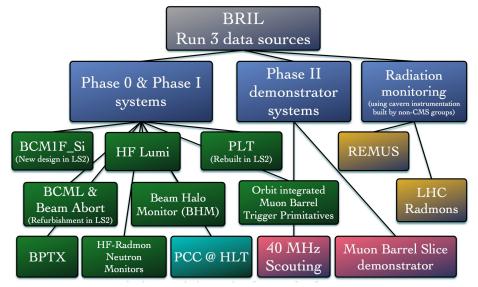
Linear EVB (Run 2)

New in Run 3: 100 Gb/s
Ethernet with remote DMA
(RoCE v2)

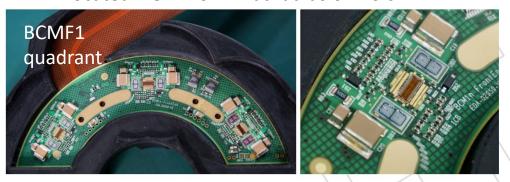
Chassis-based Ethernet switch (Juniper)


- Single switch for readout (672 x 10 Gb/s inputs) to RU/BU PCs
- Event Building network 100 Gb/s Ethernet links
 - O(50) links to RU/BU PCs
- Event Backbone network
 - 100 Gb/s EVB \leftarrow \rightarrow 25 GB/s Ethernet links
 - Serving HLT, Storage filesystem and data transfer from P5 to CERN computing center (Tier-0)



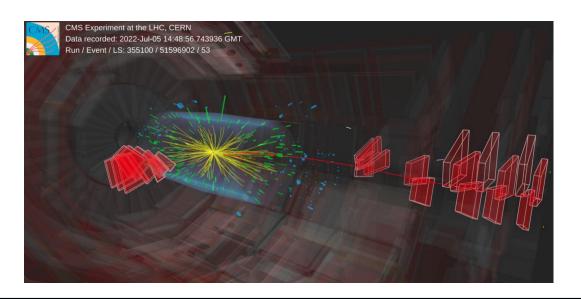

Fully cabled Run 3 EvB switch

Beam Radiation Instrumentation and Luminosity (BRIL)

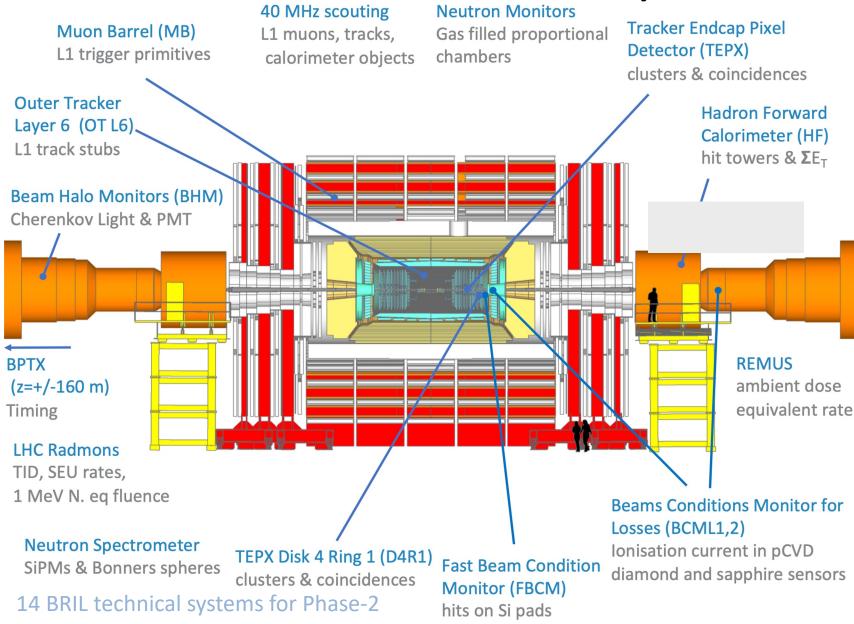

- Beam and radiation monitoring and protection
- Performs luminosity measurement
 - real-time for immediate feedback to LHC and detector operations, and for 'offline' analysis
 - Using detectors Pixel tracker, HF, Muon system
 - Using deficated luminometers PLT and BCM1F
- Pixel Luminosity Telescope (PLT)
 - 8 silicon pixel detectors located at each end of CMS
 - refurbished for Run 3 due to radiation damage



- Fast Beam Conditions Monitor (BCM1F)
 - Fast particle counter
 - Redesigned in Run3: all silicon detector
 - Improved stability, radiation tolerance and linear response
 - Located 1.8m from IP at radius of ~ 6 cm



Start of the Run 3


- Intense period of commissioning with cosmics and first beams circulating in the LHC
- First sqrt(s) 900 GeV collisions May 27 2022.

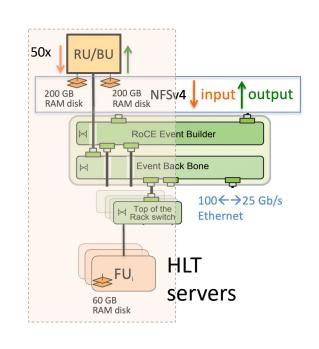
 July 5th 2022. – start of 13.6 TeV Run 3 protonproton physics run (media day)

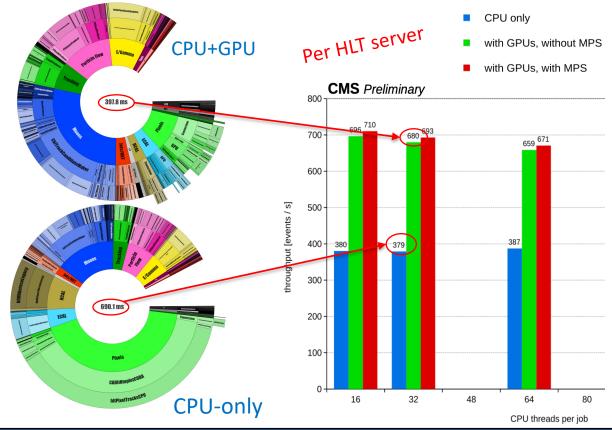
BRIL: 15 technical systems for HL-LHC

- Bunch-by-bunch luminosity
 - Target: 1% precision for analysis,
 (2% online)

FBCM

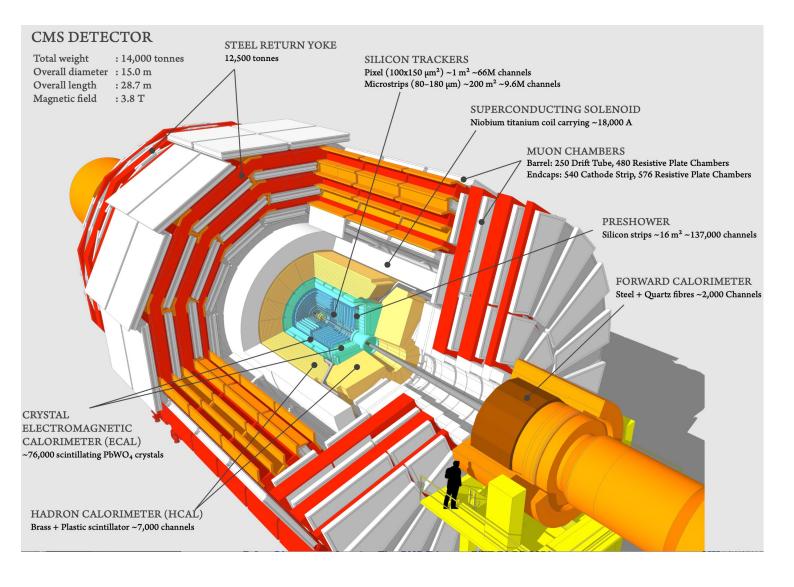
- Dedicated luminometer
- Si pad diodes
- sub-BX timing and radiation resistance
- Adapting Phase-2 inner tracker electronics


High Level Trigger refresh and performance

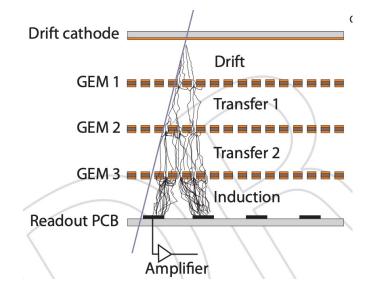

- Full-event reconstruction and filtering in the HLT
 - New generation of Server CPUs replacing end-of-life Run 2 nodes
 - Increased level of multi-threading in Run 3 → improved memory usage
 - Various algorithmic improvements and taking advantage of detector upgrades
 - Heterogeneous computing: GPU coprocessors (pilot for Phase-2)
 - Output to a distributed LustreFS filesystem and transfer to Tier-0

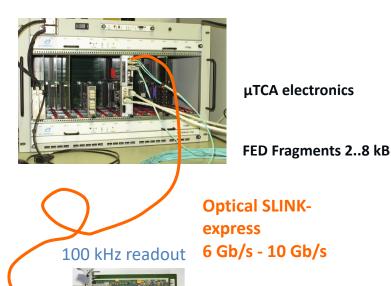
- CPU → GPU offloading for HLT reconstruction
 - Initially implemented for:
 Pixel, HCAL, ECAL
- Achieved ~= 40%

2022 HLT Farm


2022 1121 1 41111		
CPU and memory	2 x AMD Milan 7763 (64 cores @2.45 GHz) 256 GB RAM	
GPU	2x Nvidia Tesla T4	
# servers	200	
# cores	25600	
kHS2006 benchmark	645	

Nvidia Tesla T4


Compact Muon Solenoid


Muon system – Gas Electron Multiplier Chambers (GEM)

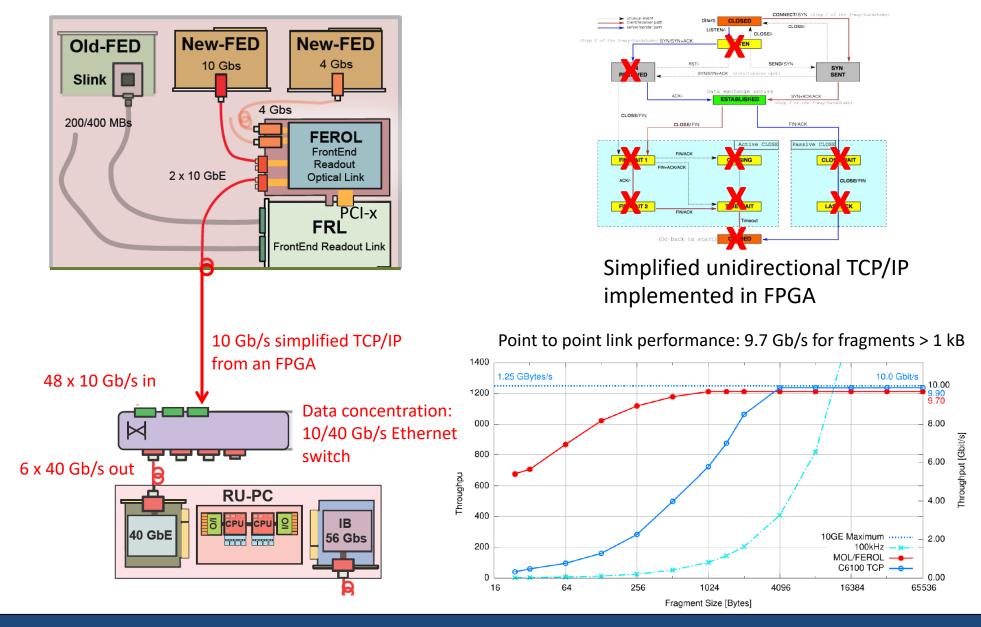
GEM detectors

- High-rate capability, adequate pattern recognition → more efficient muon reconstruction
- radiation resistance
- Important for phase-2 (5 kHz /cm² hit rate)

BACKUP: CMS Readout in Run 2 and Run 3

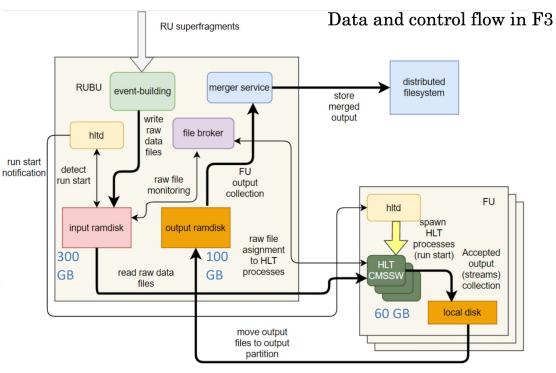
FEROL

Frontend-Readout Optical Link

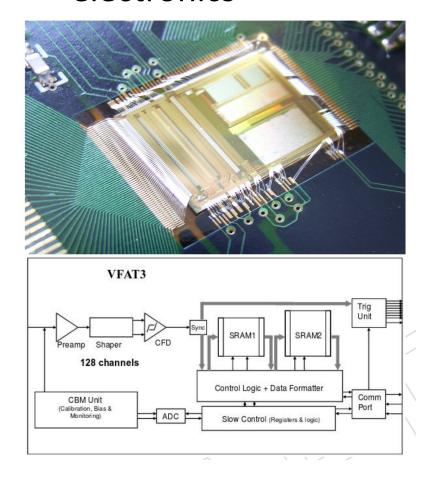

- 6 10 Gb/s SLinkExpress inputs
- 10 Gb/s simplified TCP/IP output (Ethernet) implemented in FPGA
- High-throughput FEROL40 μTCA card used with Pixel upgrade

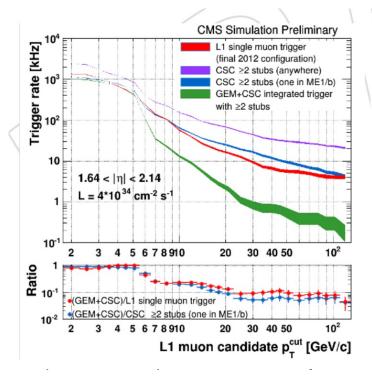
- Phase-1 (Run 2) upgrade readout system remains in use in Run 3
 - Run-1 era detector hardware: still in use interfaced through the old FRL (PCI-X) carts
- TCDS timing and clock distribution system
 - Introduced in Run 2 and fundamentally unchanged in Run 3

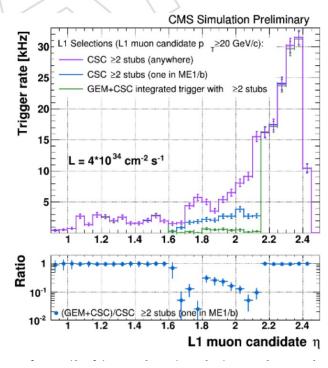
- Run 3:
 - 759 FED fragments → ~ 510 readout cards (FEROLs)
 - added GEM detector readout and 8 new HCAL channels
 - Upgrade of VME-PCs control subdetector crates


Run 2 and Run 3 - FEROL TCP/IP

File-based Filter Farm

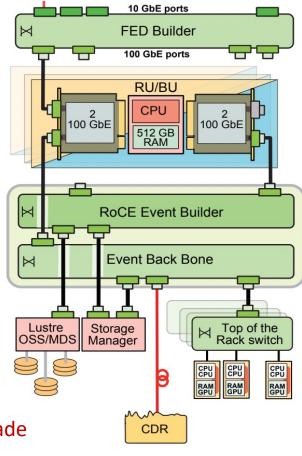

- Asynchronous service-based approach
 - HLT daemon service (Python 3) based on filesystem events
 - Spaws and controls CMSSW processes running HLT reconstruction and selection
 - Merging
 - 1st level: aggregation of HLT output on FU shipping to an output RAM disk buffer on RU/BU (overall ~ kHz)
 - In total, 3 merging levels (per-FU, per RU/BU (appliance) and global) to get the data fully aggregated in single location
 - Dedicated elasticsearch based monitoring system
- New functionality in Run 3:
 Dynamic assignment of FU
 Groups to RU/BU nodes
 - Flexibility in case of HW issues and (e.g. replacing RU/BU with hot-spares), prevents


Cconsidered a suitable design for the Phase-2 upgrade

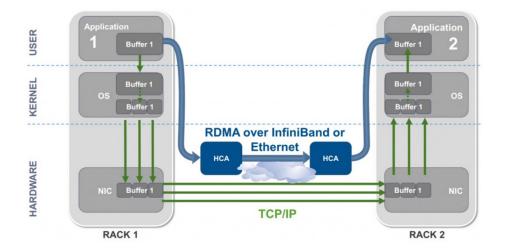


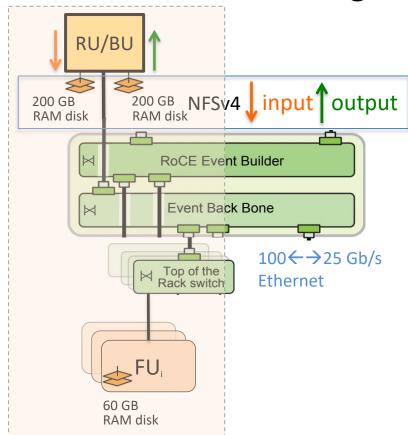
Muon system – Gas Electron Multiplied Chambers (GEM)

New on-detector/readout electronics


I/O nodes – "RUBU"s

Zen2 AMD architecture 8 x 4-core CCDs chiplets (16 MB L3 cache) Interconnect: I/O, memory


- Dell R7515 nodes (up to 57 in production):
 - 32 Core AMD Epyc 7502P processor (single-socket)
 - Evolution over 8-core / 16-core RU, BU Intel servers in Run 2
 - 512 GB RAM DDR4 8 channels
 - application and data buffering
 - Experimenting with single-socket systems for phase-2 upgrade
 - 2 x Mellanox ConnectX-6 Dual-100 GB/s NICs (PCIe Gen4)
 - Utilising 3 x 100 GB/s Ethernet links: for data-concentrator, EVB, Event-Backbone networks
 - New for Run 3 EVB:RoCE v2 (RDMA over Converged Ethernet)
 - Possible with a monolythic switch and more cost effective than Infiniband – interest in technology for Phase-2
 - Gen5 PCIe cards feasible for Phase-2


New technology - RoCE

RDMA

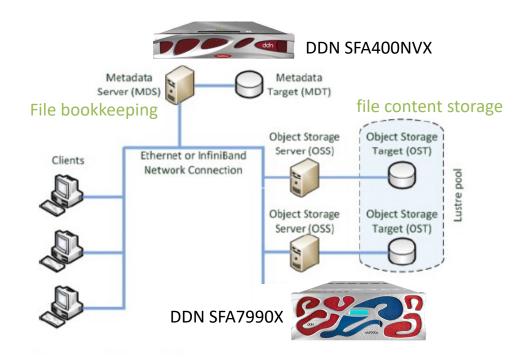
- Direct memory access between servers (userspace applications) without involving host CPUs – acceleration provided by host NICs
- Part of Infiniband standard
- Used in Run 2 DAQ:
 - Via Infiniband Verbs software implementation
- RoCE RDMA over Converged Ethernet
 - Encapsulation of IB (RDMA) over the Ethernet
 - Same software API
 - Requirement: loss-less non-blocking Ethernet
 - Possible with a chassis-based switch
- Adopted for Run 3 DAQ RoCE v2
 - Cost effective and easier to manage than IB
 - reused Run 2 IB software implementation with a minor adaptation

High Level Trigger

HLT farm connected via a high-performance network

- Run 3: Top-of-Rack switches (5 racks * approx. 40 HLT nodes) total 200 nodes
 - Per rack: 8 x 100 Gb/s uplinks to the Event Backbone network
 - In total 200 nodes HLT nodes with 25 Gb/s Ethernet connectivity

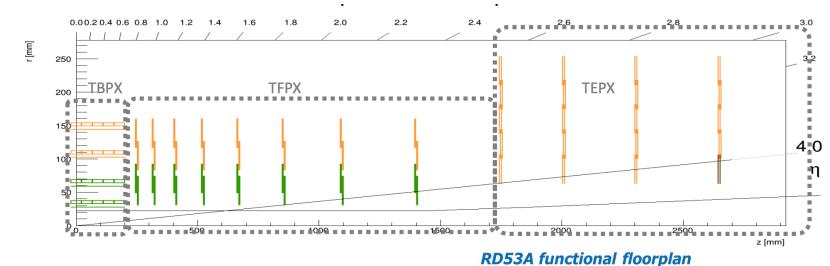
File Based Filter Farm (F³)

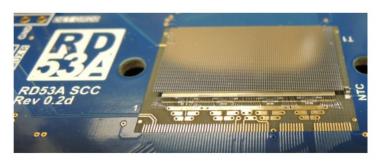

- Concept introduced in Run 2, kept for Run 3
- Input, output (event data and metadata), monitoring and logging flow using **files (filesystem)**
 - Network filesystem (NFS) v4 over standard TCP/IP as transport protocol
- Reduced coupling between DAQ and HLT software platforms
 - HLT uses standard CMS offline software (DAQ-specific code implemented as modules)

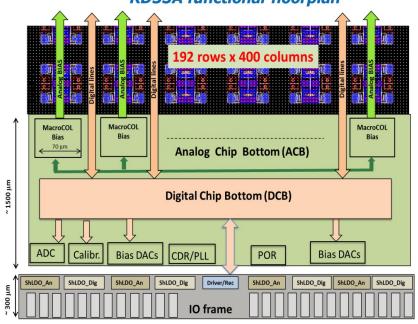
RAM disks (Linux **tmpfs**) used as data buffers

- Buffer on RU/BUs storing completed events from EVB and HLT output
 - 300 GB + 100 GB per RUBU, 60 GB per FU several minutes of data buffer
 - Each RU/BU ramdisk NFS-mounted by 3-4 FU nodes (HLT Appliance)
- From run 3 using 2 MB huge pages (Linux kernel feature)
 - Necessary for memory I/O performance matching 100 Gb/s link speed

CMS storage and transfer

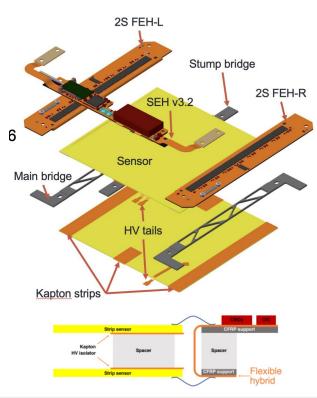



Lustre global filesystem

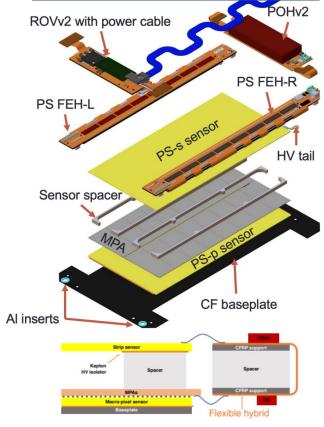

- Write buffer for HLT output aggregated from FUs and RU/BUs
- I/O requirements driven by the Heavy-Ion programme (over 15 GB/s to storage)
- New system installed for Run 3
 - 1.2 PB usable disk space (several days of data taking) - HDDs
 - Network: Event-Backbone
 - 4 x 100 Gb/s links for transfer to Tier-0
- 15 GB/s stable performance
 Scaled up system envisioned for the
 Phase-2 upgrade

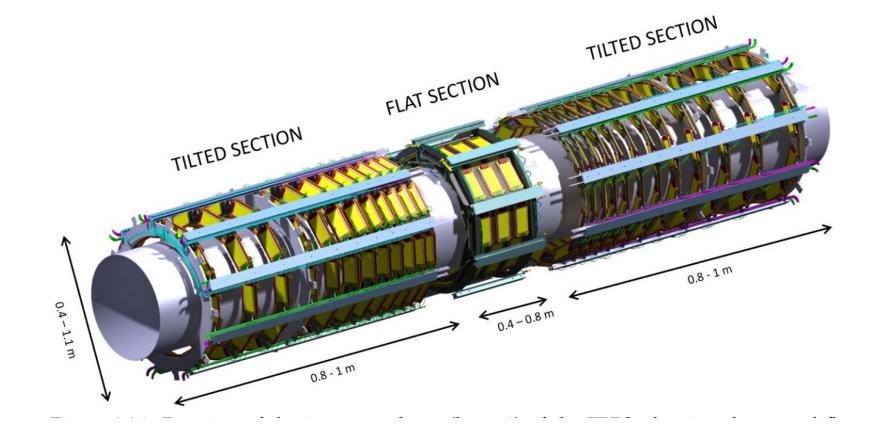
Inner Tracker Phase-2 upgrade

- Expected exposure to radiation levels
 1.2 Grad and 2.3 x
 10^16 n_{eq}/cm²
- hit rate 3.2 GHz/cm²
- 65nm CMOS RD53
 (B variant) chip
 (developed for ATLAS and CMS)
 - Pixel size 25 x 100 μm (3D or planar)
 - Active components integrated into the chip

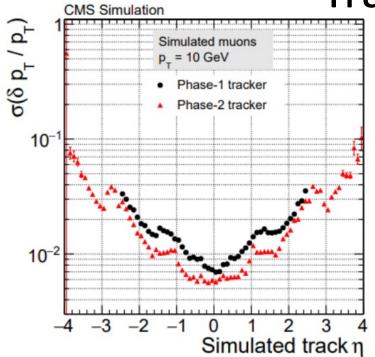


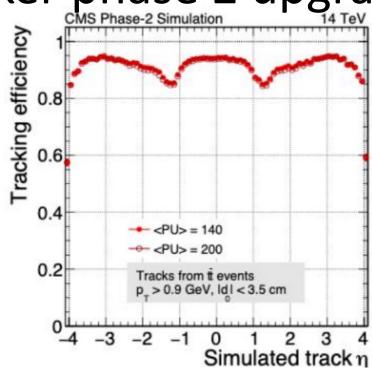
Outer Tracker Phase-2 upgrade

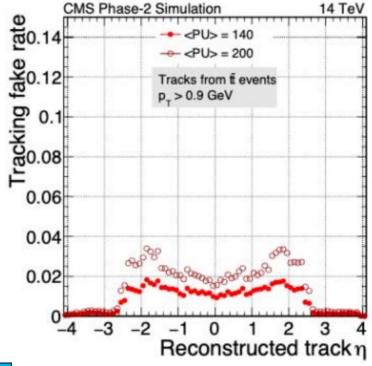

- 2S module (outer layers)
 - 10 x 10 cm
 - 90μm pitch, 5 cm
 strip length (z)
 - 4x 1016 strips (2x per layer)
 - Coarse z coordinate



- PS module (inner layers)
 - 5x10 cm
 - PS-p (pixel) layer
 - MacroPixel1.5mm x 100μm
 - 32x960 pixels
 - PS-s (strip) layer
 - Length 2.5 cm(z)
 - 100 μ m pitch
 - 2x960 strips
 - Accurate zcoordinate






• Inner layer of the Phase-2 Outer Barrel Tracker

Tracker phase 2 upgrade

	CMS Outer Tracker Phase 1	CMS Outer Tracker Phase 2
Total surface	~ 206 m2	~ 191 m2
# Modules	15148	13296
# Strips	9.3 M	42 M
# Macro-pixels	0	172.5 M
L1 trigger rate	100 kHz	750 kHz
Latency	3.2 µs	12.5 µs
Powering	direct	DC –DC converters
Cooling	C ₆ F ₁₄	CO ₂

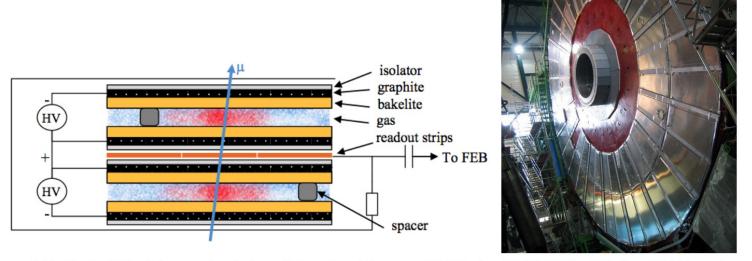
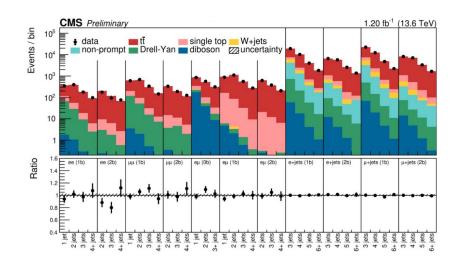
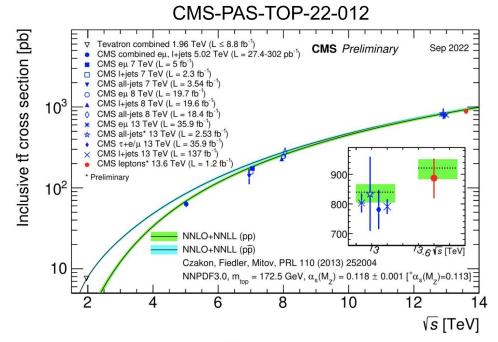




Figure 1.7: Left: Working principle of the double gap RPCs in CMS [23]. Right: RPC endcap chambers RE1/2 and RE1/3 after installation. The iron yoke is shown in red.

Early results at 13.6 TeV

- Result: σ =887⁺³⁸₋₄₂(stat+sys)±55(lumi) pb
- Consistent with SM prediction: 921⁺²⁹₋₃₇ pb

