

CMS Trigger Performance in Run 2 and Run 3

Dener S. Lemos on behalf of the CMS Collaboration

University of Illinois at Chicago

29/03/2023

Triggering at LHC

The CMS detector

Iron return yoke interspersed

with Muon chambers

UIC

The CMS trigger system

Triggering in two steps

Level-1 (L1) trigger architecture

- Hardware-based (FPGA) >
- Simplified readout >
 - Calorimeters (ECAL and HCAL) ⇔
 - Muon system \Rightarrow
- Timing \succ
 - decision ~1 µs \Rightarrow
 - latency < $4 \mu s$ \Rightarrow

Rates >

- Input ~30 MHz
- output ~100kHz \Rightarrow
- Objects >

CMS

jets, $e/\gamma, \tau, \mu$, and energy sums \Rightarrow

Trigger

Trigger bit

RAW

High-level trigger (HLT)

- Software-based (HLT Computer Farm)
 - Run 2: ~26k CPUs in 2017 and
 ~30k CPUs in 2018
- HLT path (Seeded from L1)
 - Start filtering with simple objects
 - Increase the complexity
 - ⇔ Output
 - → Streams and datasets
- HLT Menu
 - > 400 paths running in parallel
 - → producers are shared
- Time latency ~ 260 ms on average
 - Rates: Input ~100 MHz, output ~2 kHz

6

Run 2 performance

Electrons and photons

L1

- Clusters from HCAL and ECAL towers
- ⇒ 3 levels of isolation (ISO): none, loose, tight
- \Rightarrow ISO as function of E_{T} , η , and pile-up (PU)

HLT

- Tight ISO/ID helps to reduce rates
- 4-layer pixel detector also help with rates
 - → 1-2% efficiency cost
- ⇒ Single *e* ID re-tuned in 2017
 - → recovering specially endcap region

CMS Preliminary 2018, 9.7 fb⁻¹, 13 TeV 8.7 fb⁻¹ (13 TeV) 2016, 4.2 fb⁻¹ (13 TeV) 2017 ency efficiency CMS 15/Ge/ Preliminary $L_1+HLT m(y) < 1.479$ Event 600 2016 е In_{sc}l > 1.479 400 Efficiency CMS-DP-2018/030 Numerator 300 ---- Denominator 200 2017/2016 MS-DP-2018/049 100 09 20 30 40 50 60 70 200 100 100 150 200 250 300 SC E_T [GeV] $p_{\tau}(\gamma)$ [GeV]

8

Muons

► L1

- Muon system (DT, RPT, CSC)
- 2017 upgrade reduced the rates by a factor 2
 - → overlap region
 - ⇒ BMFT = DT+RPT (barrel)
 - ⇒ OMFT = DT+RPT+CSC (overlap)
 - ▷ EMFT = RPT+CSC (endcap)
- Overall efficiency of ~90%

HLT

Inefficiency and data/MC disagreement mainly from L1

9

- Isolation inefficiency is very small (2-3%)
- Without L1 the efficiency is ~99%

Taus

- At L1 it uses clusters from HCAL and ECAL towers
- Efficiencies calculated using tag and probe
- > Discrepancies from 2016 data are observed due
 - different HLT thresholds, differences on L1 seed and different PU
- > In 2018 the HadronPlusStrips (HPS) algorithm used offline keeping similar rate
 - charged hadrons and photons are combined in multiple ways and ranked based on their consistency with a genuine tau decay.

Jets

► L1

- Calorimeters only
- Calibrations and PU corrections applied
 - → small PU effect in jet resolution
- Good jet angular resolution
- HLT
 - Particle flow (PF) added (tracking)
 - → increases p_T resolution
 - Online vs offline: 5% difference
 - Online b-tagging provides 70%
 efficiency and 5% fake rate
 - → <u>DeepCSV</u> used during Run 2

CMS-DP-2018/037

Run 3 improvements and performance

New L1 trigger strategies: ECAL "spike" rejection

- "Spikes": Fake high energy deposit caused by caused by the ionisation in the ECAL
 - Two sets of L1 amplitude weights optimized to remove unwanted spikes
 - ⇒ Minimum deviation from signal-like energy deposit (δ_{min}) = 2.5 GeV for best signal eff

CMS

New L1 trigger strategies: displaced muons

- New algorithms in the L1 trigger targeting muons displaced from the collision vertex
 - No beamspot matching and no extra constraints
 - \rightarrow p_T, d_{xv} and di-object invariant mass
 - \Rightarrow Remove overlap with jets/ τ 's using ΔR at L1
 - Useful for search for Long Lived Particles (LLP)

143rd LHCC Meeting

New L1 trigger strategies: HMT / Muon showers

CSC High Multiplicity Trigger (HMT)

CMS,

- Search for exotic LLP using hadronic showers in CSC
- Signal acceptance 20x better than Run 2 triggers
- Opportunity to study the LLPs with lifetimes comparable to a few meters
- Possibility to study EM-initiated processes

HLT tracking performance for Run 3

- > HLT tracking using optimized pixel track reconstructions, called "Patatrack"
 - Allows HLT to run in a single iteration
 - Shows a better track performance even in higher PU
 - Can be offloaded to GPU's: improvement in reconstruction timing

HLT jet performance for Run 3

- Improve performance of jets using Patatrack
 - Pixel tracks as input of PF jets
 - → Reduction in fake rate for high p_T tracks in PF jets
- Usage of Neural Network for jet flavour classification
 - Model training on online reconstruction

17

▷ <u>DeepJet</u>+<u>Particle Net</u>

HLT farm for Run 3

Hybrid CPU+GPU farm

CMS.

- 200 nodes (25600 CPU + 400 GPU) \Rightarrow
 - \rightarrow 2 AMD Milan 64-core CPUs and 2 **NVIDIA** Tesla T4 GPUs

800

700

600 -

500 -

400 --380

300 -

200 -100 -

put [evel

- ~40% of HLT reconstruction \Rightarrow offloaded to GPUs
 - Pixel, ECAL and HCAL \rightarrow
- Fully commissioned for Run 3 \Rightarrow

Summary and conclusions

- The CMS trigger system has proven to be robust, reliable and highly performant during the entire Run 2
 - Showing great performance during the entire period
 - → Essential for all physics analysis at CMS
- The first year of Run 3 was a success
 - New L1 algorithms and new HLT Farm using GPUs (specially needed for high PU)

And there is much more coming, stay tuned!!!

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:07 CEST) Run / Event: 150431 / 541464

The work of the UIC HENP group is supported by the DOE-NP grant

20

(c) CERN 2009. All rights reserved.

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:07 CEST) Run / Event: 150431 / 541464

-

21/

L1 Vector Boson Fusion (VBF)

MS

- > VBF is sensitive to $H \rightarrow \tau \tau$ and invisible decay's
 - Since 2017 VBF invariant mass calculation is implemented at L1
 - Trigger strategy: target VBF-induced jets rather than Higgs bosons decay products.
- The addition of the VBF algorithms increased the acceptance on the VBF H(ττ) signal by more than 40%.

