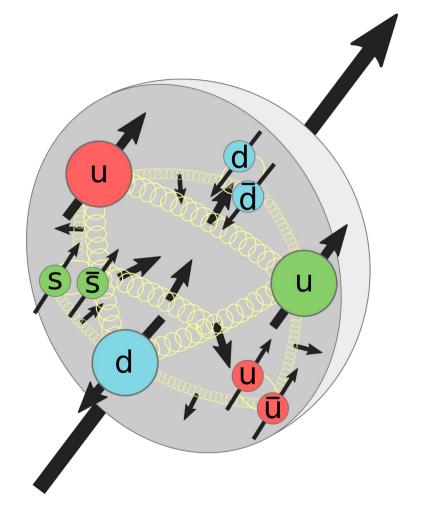
XXX INTERNATIONAL WORKSHOP ON DEEP-INELASTIC SCATTERING AND RELATED SUBJECTS

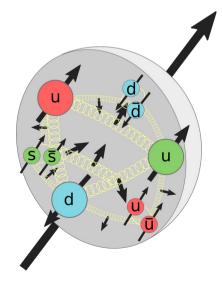

Recent Experimental Results on Spin and 3D Structure

MARIA ŻUREK Argonne National Laboratory

MARCH 27 - 31, 2023

PHYSICS QUESTIONS - OUTLOOK

Questions

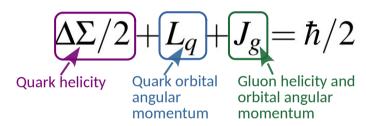

How does the **spin of the nucleon originate** from its **quark, anti-quark,** and **gluon** constituents and their dynamics?

- 1. How do gluons contribute to the proton spin?
- 2. What is the landscape of the polarized quark-sea in the nucleon?
- 3. What is the **spin structure of nucleon at high-x**?

What can **transverse-spin phenomena** teach us about the structure of the nucleon and properties of QCD?

How is the **nucleon spin correlated with the motion** of partons? How is the **nucleon spin correlated with the spatial distribution** of partons?

- 4. GPD-sensitive measurements
- 5. Quark and Gluon Sivers' function
- 6. Quark Collins effect (Transversity + Collins Fragmentation Function)
- 7. Large Forward Transverse Single Spin Asymmetries
- 8. Unpolarized **Boer-Mulders** function

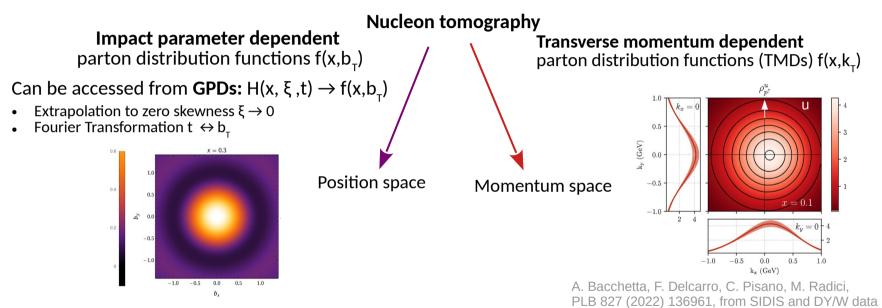


PHYSICS QUESTIONS

How does the **spin of the nucleon originate** from its **quark, anti-quark,** and **gluon** constituents and their dynamics?

Two established approaches to look at the compositions of the proton spin:

Ji sum rule:

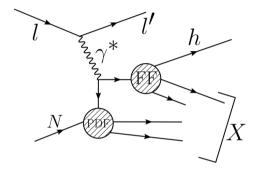

- Frame independent spin sum rule
- Quark and gluon Jq (sum of ΔΣ/2 and Lq) and Jg can be obtained form Generalized Parton Distributions (GPDs) moments
- Phys. Rev. Lett. 78, 610–613 (1997)

Jaffe-Manohar sum rule:

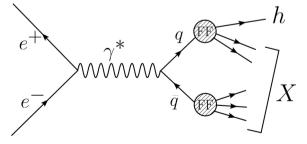
- All terms have partonic interpretation
- In infinite-momentum frame
- eq and eg (Twist-3 quantities) can be extracted from GPDs
- Nucl. Phys. B 337, 509–546 (1990)

PHYSICS QUESTIONS

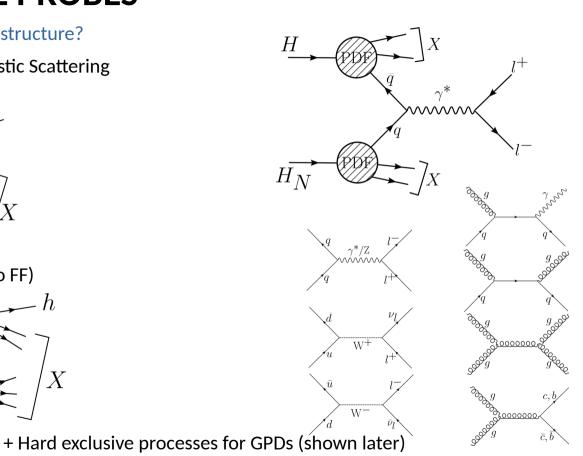
How is the **nucleon spin correlated with the motion** of quarks and gluons? How is the **nucleon spin correlated with the spatial distribution** of partons?



Huey-Wen Lin, PRL 127 (2021) 18, 182001, from Lattice


EXPERIMENTAL PROBES

How to access nucleon spin structure?


(Semi-Inclusive) Deep Inelastic Scattering

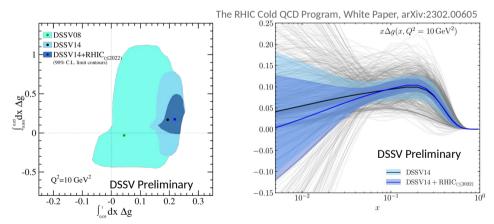
e+e- annihilation (access to FF)

Hadron-hadron interactions

LONGITUDINAL SPIN STRUCTURE

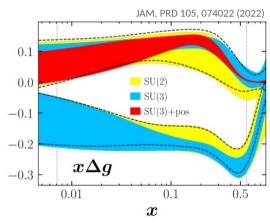
- Decades of studies in Deep Inelastic Scattering, as well as Semi-Inclusive Deep Inelastic Scattering and proton-proton collisions
- **Polarized DIS cross section** studied at SLAC, CERN, DESY (HERMES), JLab encodes information about **helicity structure of quarks** inside the proton (double spin asymmetries)

k. E


GLUON HELICITY

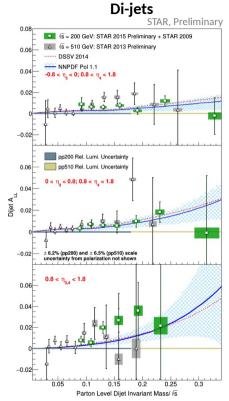
LO for illustration

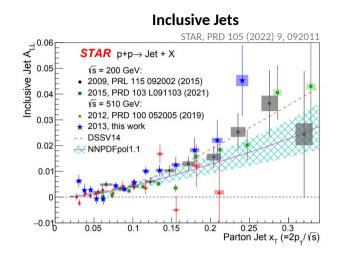
$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum \Delta f_a \otimes \Delta f_b \otimes \hat{\sigma} a_{LL} \otimes D}{\sum f_a \otimes f_b \otimes \hat{\sigma} \otimes D}$$

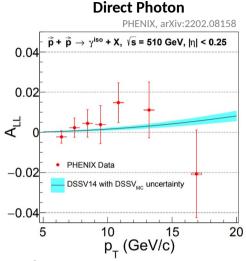

$$\vec{p} + \vec{p} \rightarrow \text{jet/dijet/hadrons} + X$$

- At RHIC energies: sensitivity to qg and gg Access to $\Delta g(x)/g(x)$
- Cross-section measurement to support the NLO pQCD interpretation of asymmetries
- Data included in global pQCD analysis provided evidence for positive gluon polarization for x > 0.05 at $Q^2 = 10$ GeV²

 $\Delta G = 0.218(27)$, x > 0.05, Q² = 10 GeV² (68% C.L.)


DSSV14+RHIC \leq 2022: newest RHIC data included (STAR jets and dijets, PHENIX π)




$$\Delta G = 0.25(3)$$
, x > 0.05, Q² = 10 GeV² (SU(3) + pos)

Inclusive jet data (also STAR 2015) from unpol. and pol. hadron collisions (+ DIS and DY) included

GLUON HELICITY

Higher √s and more forward rapidity push sensitivity to lower x

- Down to ~0.004 with STAR Endcap (η < 1.8) dijets at 510 GeV
- **Dijets** provide stricter constraints to underlying partonic kinematics
- **Direct photon** sensitive to gq \rightarrow yq LO process; **clean access to** $\Delta g(x)$ (no hadronization)
- Consistent results from both energies and both experiments

RHIC concluded the data taking with longitudinally polarized protons in 2015 The data are anticipated to provide the most precise insights in $\Delta g(x)$ well into the future

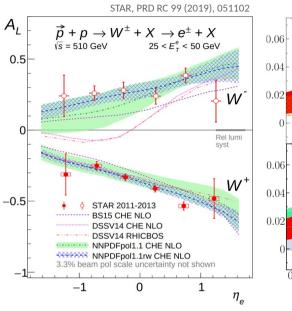
QUARK SEA HELICITY

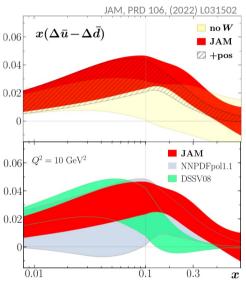
$$A_{L}^{W^{+}}(y_{W}) \propto \frac{\Delta \bar{d}(x_{1})u(x_{2}) - \Delta u(x_{1})\bar{d}(x_{2})}{\bar{d}(x_{1})u(x_{2}) + u(x_{1})\bar{d}(x_{2})}$$

$$A_{L}^{W^{-}}(y_{W}) \propto \frac{\Delta \bar{u}(x_{1})d(x_{2}) - \Delta d(x_{1})\bar{u}(x_{2})}{\bar{u}(x_{1})d(x_{2}) + d(x_{1})\bar{u}(x_{2})} \qquad A_{L} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

LO for illustration

Separation of quark flavor


• $W^{+}(W^{-})$: predominantly u(d) and $\overline{d}(\overline{u})$


Maximal parity violation

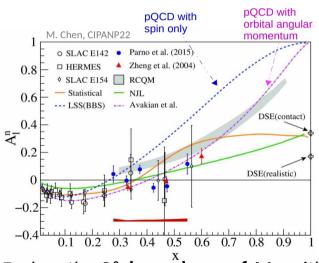
 W couples to left-handed particles or righthanded antiparticles

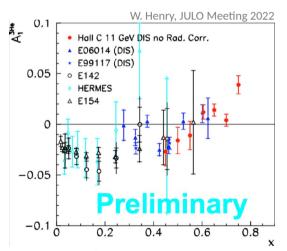
The decay process is calculable

Free from fragmentation function

Covered lepton η : 0.05 < x_1 < 0.25

Full available data set analyzed from STAR (shown) and PHENIX (PHENIX, PRD 98 (2018), 032007)


- Significant preference for $\Delta \overline{u}$ over $\Delta \overline{d} \rightarrow$ Opposite of the spin-averaged quark-sea distributions
- Evaluations from DSSV and NNPDF agree with data in sea and valence quark region


NEUTRON SPIN STRUCTURE AT HIGH-X

Hall C A1n experiment with polarized ³He target (E12-06-110)

Observable: virtual photon-nucleon asymmetry $A_1 = (\sigma_{1/2} - \sigma_{3/2})/(\sigma_{1/2} + \sigma_{3/2})$

$$A_1(x,Q^2) = \left[g_1(x,Q^2) - \gamma^2 g_2(x,Q^2)\right] / F_1(x,Q^2) \approx g_1(x) / F_1(x)$$
 for large Q²

- Without radiative corrections
- Statistical uncertainties only
- Nuclear corrections to be applied

$$A_{1}^{n} = \frac{F_{2}^{^{3}\text{He}} \left[A_{1}^{^{3}\text{He}} - 2 \frac{F_{2}^{p}}{F_{2}^{^{3}\text{He}}} P_{p} A_{1}^{p} \left(1 - \frac{0.014}{2P_{p}} \right) \right]}{P_{n} F_{2}^{n} \left(1 + \frac{0.056}{P_{n}} \right)}$$

- Explore the Q² dependence of A1n with large x value 0.61 < x < 0.77
- After combining with proton data (CLAS12), extract polarized to unpolarized parton distribution function ratios $\Delta u/u$ and $\Delta d/d$ for large x region

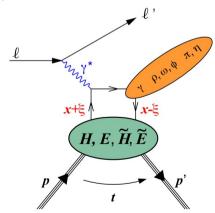
ACCESS TO GPDs

N / q	U	L	Т
U	H		E_T
L		$ ilde{H}$	$ ilde{E}_T$
Т	E	$ ilde{E}$	H_T $ ilde{H}_T$

4 chiral-even and 4 chiral-odd quark **GPDs at leading twist** for a spin-½ hadron

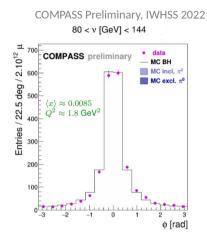
Connection to the **proton spin**:
$$J_{\mathbf{q}} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} \mathrm{d}x \ x \left[H^{\mathbf{q}}(x, \xi, t) + E^{\mathbf{q}}(x, \xi, t) \right]$$
 $J_{q} = \frac{1}{2} \Delta \Sigma + L_{q}$

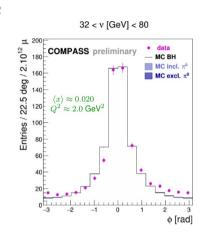
$$J_q = \frac{1}{2}\Delta\Sigma + L_q$$

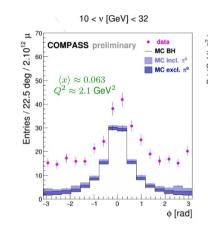

Accessed via hard exclusive processes: cross section and asymmetries

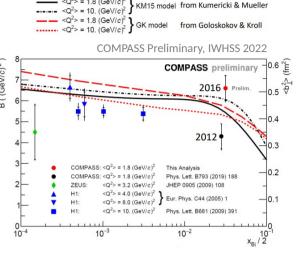
- Deep virtual Compton scattering (**DVCS**) and hard exclusive meson production (**HEMP**)
- H, E accessed in vector meson production, \widetilde{H} , \widetilde{E} in pseudoscalar meson production
- All 4 chiral-even GPDs accessed in DVCS

DVCS and access to GPDs

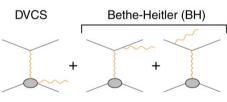

- Experimental access to GPDs via Compton Form Factors
- Different configurations: target and beam polarization, beam charge \rightarrow different CFFs
- proton + neutron DVCS \rightarrow flavor separation of GPDs


$$\mathcal{H}(\xi,t) = \sum_{q} e_q^2 \int_{-1}^1 dx \, \boldsymbol{H}^q(x,\xi,t) \left(\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon} \right)$$




WG5 Session 2 (Tue): Marie Boer

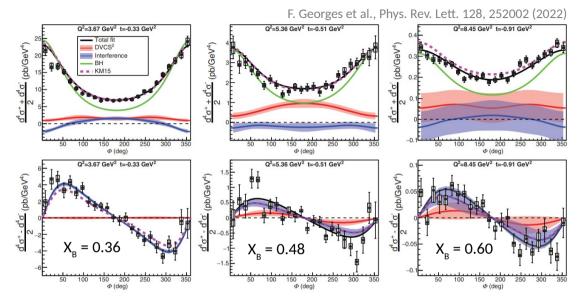
DVCS AND TRANSVERSE IMAGING

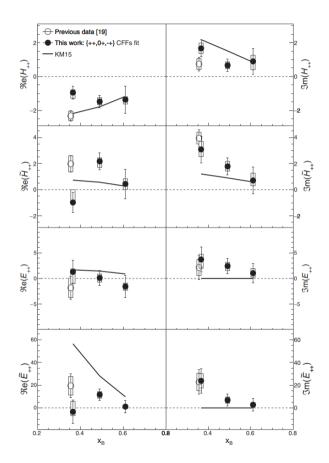

Interference between DVCS and Bethe-Heitler amplitude plays key role

• Allows to determine both magnitude and phase of the DVCS amplitude

$$\sigma = |\mathcal{T}_{\text{DVCS}}|^2 + (\mathcal{T}_{\text{DVCS}}\mathcal{T}_{\text{BH}} + \mathcal{T}_{\text{DVCS}}\mathcal{T}_{\text{BH}}) + |\mathcal{T}_{\text{BH}}|^2$$

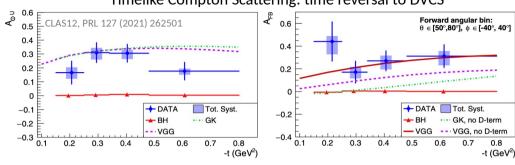
Slope of DVCS dσ/dt - determination of transverse extension of partons


- Sum of the cross sections for μ^+ and μ^- (polarized beams + unpolarized target)
- 2012 data (PLB 793 (2019) 188) + part of 2016 data
- Full 2016 dataset to be analized (~ x5 statistics)


$$\frac{\mathrm{d}\sigma^{\mathrm{DVCS}}}{\mathrm{d}t} \propto e^{-b|t|}$$

WG5 Session 1 (Tue): Anatolii Koval

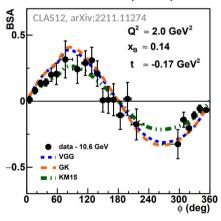
DVCS AT HALL A

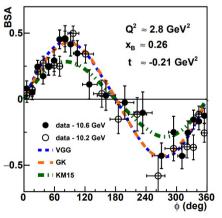


- Helicity independent and dependent cross-section at high values of the Bjorken x_p
- 2014 and 2016 data analyzed
- Extraction of 4 helicity-conserving CFF of the nucleon as a function of x_R

DVCS AND TCS AT CLAS12

Timelike Compton Scattering: time reversal to DVCS


Photon polarization asymmetry

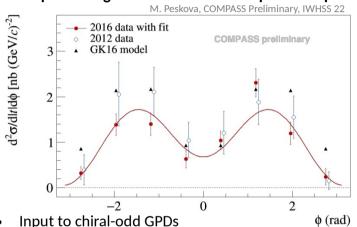

- Sensitive to Im(CFF)
- Comparison to DVCS allows to test the universality of GPDs - especially the imaginary part of H

Forward-backward asymmetry

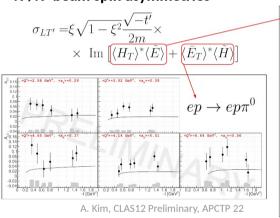
- Real part of the CFF and nucleon D-term
- Relates to mechanical properties of the nucleon (quark pressure distribution)

Beam spin asymmetry for DVCS on the proton

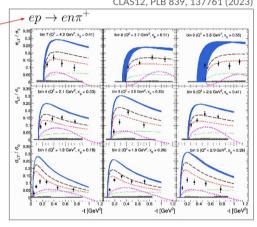
beam-spin asymmetries in the extended valence region


- Many kinematics never covered before
- In previously measured kinematics, the new data are shown to be in good agreement with existing data and improve the precision of GPD fits
- Sensitivity to Im \mathcal{H} , the imaginary part of the CFF corresponding to the GPD H

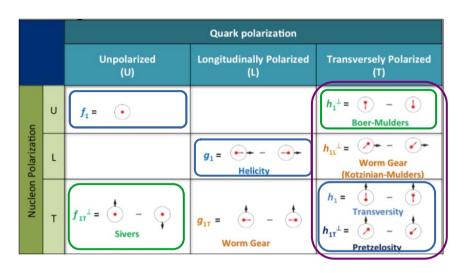
See also WG6 Session 5 (Thu): Igor Korover


HARD EXCLUSIVE MESON PRODUCTION

$$\frac{\mathrm{d}^2 \sigma_{\gamma^* p}^{\leftrightarrows}}{\mathrm{d}t \mathrm{d}\phi} = \frac{1}{2\pi} \left[\frac{\mathrm{d}\sigma_T}{\mathrm{d}t} + \epsilon \frac{\mathrm{d}\sigma_L}{\mathrm{d}t} + \epsilon \cos(2\phi) \frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t} + \sqrt{\epsilon(1+\epsilon)} \cos\phi \frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} \mp |P_l| \sqrt{\epsilon(1-\epsilon)} \sin\phi \frac{\mathrm{d}\sigma_{LT}'}{\mathrm{d}t} \right]$$


π^0 spin-averaged cross-section on unpolarized proton

 π^+/π^0 beam spin asymmetries


- PLB 805 (2020) 135454 Large $\sigma_{rr} \rightarrow \text{impact of } \overline{E}_{r}$
- Statistics shown about 2.3 x larger than the published data
- WG5 Session 1 (Tue): Anatolii Koval

Spin density matrix elements in exclusive ω and p0 meson muoproduction arXiv:2210.16932, Eur. Phys. J. C 81, 126 (2021)

- Important input for modeling Generalized Parton Distributions
- Input for the model dependent evaluation of the role of parton helicity-flip GPDs in exclusive VM production
- WG5 Session 1 (Tue): Vincent Andrieux

LEADING TWIST TMDs

TMDs surviving integration over $k_{\scriptscriptstyle T}$

Naive time-reversal odd TMDs describing strength of spin-orbit correlations.

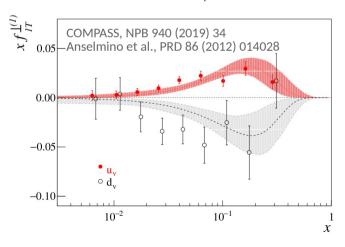

Chiral odd TMDs

- 8 TMD (PDFs) at leading-twist description (analog table for fragmentation functions)
- Off-diagonal part vanishes without parton's transverse motion
- **Sivers effect:** correlations between the nucleon transverse spin direction and parton transverse momentum in the polarized nucleon
- Collins effect: fragmentation of a transversely polarized parton into a final-state hadron
- **Boer-Mulders effect:** correlations between the parton transverse spin direction and parton transverse momentum in the polarized nucleon

TMD IN SIDIS MEASUREMENTS

Compendium of **HERMES** TMD results HERMES, J. High Energ. Phys. 2020, 10 (2020)

- TMD results with transversely polarized H target
- Refined analysis with 3D binning (x, z, P_τ)
- (Anti-)proton measurements


Kaon ($u\bar{s}$) amplitudes larger than pion ($u\bar{d}$)

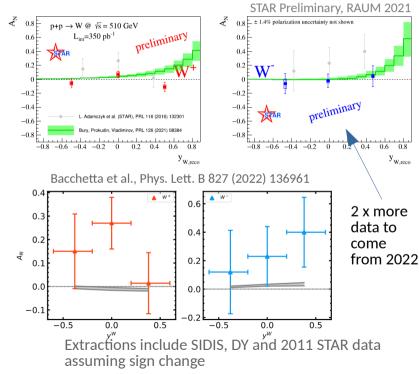
- Unexpected if u-quark scattering dominates
- May point to role of sea quarks

Sivers at **COMPASS**

COMPASS, PLB 744 (2015) 250 COMPASS, NPB 940 (2019) 34

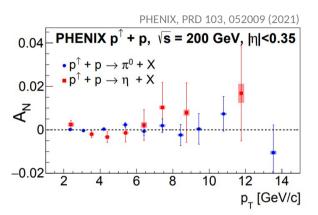
- Sivers signal smaller at COMPASS (27.6 GeV) than at HERMES (160 GeV) – TMD evolution?
- P₊ -weighted asymmetry amplitudes
 - Measurement of TMD $k_{\scriptscriptstyle T}$ moments that avoids assumptions on shape of $k_{\scriptscriptstyle T}$

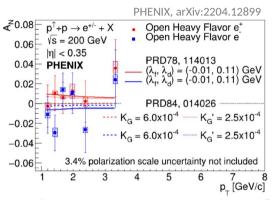
SIVERS FUNCTION SIGN CHANGE

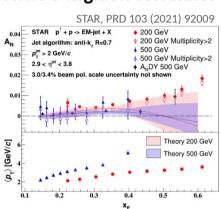

Test of nonuniversality of Sivers function: Sivers_{DIS} = - Sivers_{DIY/W/Z} and TMD evolution effects

COMPASS Drell-Yan

COMPASS Preliminary, CPHI22 $A_T^{\sin\varphi_S} \propto f_{1,\pi}^q \otimes f_{1,n}^{\perp q}$ DY - HM range COMPASS, 2015 + 2018 Full Data Sample Curves from JHEP 02, 166 (2021) $4.3 < M_{uu}/(\text{GeV}/c^2) < 8.5$ COMPASS Drell-Yan, NH 2015+2018 data preliminary JHEP 02(2021)166 - - SPM ___ IAM20 10^{-2} 10^{-1} 10^{-1} 0 0.2 0.4 0.6 0.8 0.5 $q_{_{\rm T}}$ (GeV/c) $M_{\rm min}~({\rm GeV}/c^2)$ $A_{\mathrm{T}}^{\sin(\phi)}$ COMPASS preliminary Drell-Yan, NH 2015+2018 data Sign change JHEP 02(2021)166 — LFCOM No sign change --- JAM20 - - - Torino -0.1 4×10^{-2} 10^{-1} 2×10^{-1}

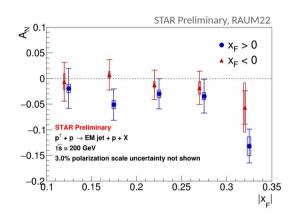

COMPASS data favor the sign change of Sivers TMD

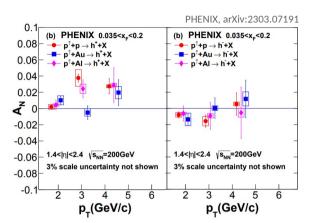

STAR W Production

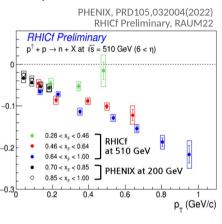


TWIST-3 CORRELATORS

Indirect constraint on the Sivers function via integral relationship with the Twist-3 trigluon correlator



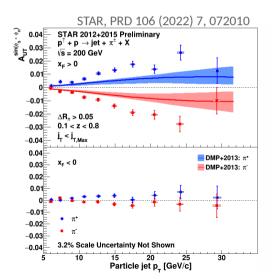

Theory curves: L. Gamberg, Z. Kang, A. Prokudin, PRL 110 23, 232301 (2013)


- RHIC midrapidity measurements for direct photon, pions, HF electrons and jets sensitive to tri-gluon twist-3 → gluon Sivers TMD
- **sPHENIX** capabilities in mid-rapidity: direct photons and D^o meson asymmetries
- STAR enhanced capabilities with forward upgrade: jet, π^0 , charged hadrons, photons A_N : \rightarrow constraint on the evolution and flavor dependence of the Twist-3 ETQS function

FORWARD TRANSVERSE A_N

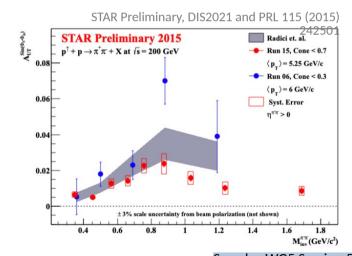
Studying origin of large forward transverse single spin asymmetries and their nuclear dependence

- Large A_{N} at forward region is observed in proton-proton collisions, e.g. $p^{\uparrow}+p \rightarrow \pi + X$
 - Possible origin: Sivers and Collins effects, Twist-3 correlators and FF, Diffractive Processes
 - STAR diffractive A, negative theoretical inputs are needed for interpretation
- Nuclear dependence for charged hadrons studied in PHENIX: In $x_F > 0$, h^-A_N : small to zero in pp and zero in pA. For h^+ noticeable A_N suppression in pA collisions. STAR π^0 A_N (2.6 < η < 4.0, 0.2 < xF < 0.7, 1.5 < pT < 7 GeV/c): No strong A dependence.
- Neutron forward A_N from PHENIX and RHICf: π and a_1 exchange model predicts that the A_N increases in magnitude with p_T without x_E dependence (B. Z. Kopeliovich et al., PRD 84,114012 (2011)).


WG5 Session 5 (Thu): Babu Pokhrel, Navagyan Ghimire

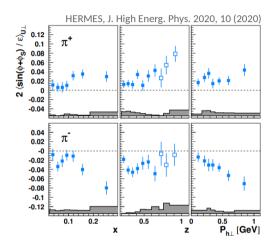
TRANSVERSITY

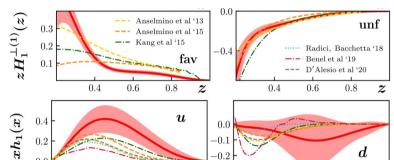
- Net density of quarks with spin aligned with the transversely polarized nucleon (leading twist)
- Two asymmetries A_{IIT} provide sensitivity at RHIC


Spin-dependent modulation of hadrons in jets Collins function (TMD FF)

Correlation of transverse spin of fragmenting quark and transverse momentum kick given to fragmentation hadron

Parton spin Nucleon spin


Di-hadron correlation measurements
"interference FF" (collinear framework)
Correlation of transverse spin of fragmenting quark and momentum cross-product of di-hadron pair

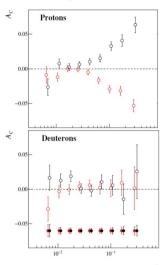


See also WG5 Session 5 (Thu): Fragmentation Function Measurements at Belle, Katherine Parham Transverse-Momentum-Dependent Fragmentation at LHCb, Sook Hyun Lee

TRANSVERSITY

- Net density of quarks with spin aligned with the transversely polarized nucleon (leading twist)
- HERMES & COMPASS Collins asymmetries

Global extractions - Collins function and transversity


0.8

0.4

--- Echevarria et al '14

--- Anselmino et al '17

0.6

u and d-quark transversity have ~equal magnitude and opposite size for favored and unfavored Collins FFs

JAM Collaboration, PRD 102, 054002

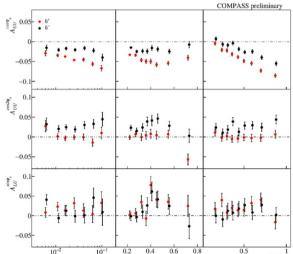
0.2

(2020)

• **d-quark transversity** less constrained given the u-quark dominance of many of the processes used in the global fits

0.6

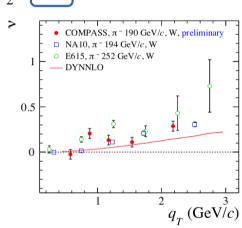
- COMPASS 2022 run on the deuteron will double the experimental precision on the proton's tensor charge $g_{\tau} = \delta u \delta d$
- Further prior-to-EIC measurements of Collins asymmetries: STAR with forward upgrade, sPHENIX, JLab12/SoLID, SpinQuest


0.8

BOER MULDERS

Unpolarized SIDIS on proton at COMPASS

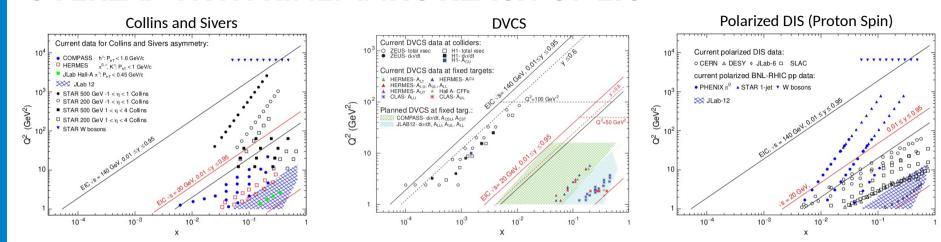
• Transverse momentum distributions and azimuthal symmetries


$$F_{UU}^{\cos\varphi_h} = \frac{^{2M}}{Q} \mathcal{C} \left[-\frac{(\hat{h} \cdot \vec{k_T})}{M} f_1 D_1 - \frac{(\hat{h} \cdot \vec{p_\perp}) k_T^2}{z M^2 M_h} h_1^{\perp} H_1^{\perp} + \cdots \right]$$

$$F_{UU}^{\cos 2\varphi_h} = \mathcal{C} \left[-\frac{^{2(\hat{h} \cdot \vec{k_T})} (\hat{h} \cdot \vec{p_\perp}) - \vec{k_T} \cdot \vec{p_\perp}}{z M M_h} h_1^{\perp} H_1^{\perp} \right]$$
 A. Moretti, CPHI22 Boer-Mulders term

Rich kinematic dependences, difference between positive and negative hadrons

Unpolarized DY angular distribution at COMPASS


$$\frac{d\sigma}{d\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda + 3} \left[1 + \lambda \cos^2\theta_{CS} + \mu \sin 2\theta_{CS} \cos\phi_{CS} + \frac{\nu}{2} \sin^2\theta_{CS} \cos 2\phi_{CS} \right]$$
R. Longo, CPHI22

DYNNLO pQCD calculation not enough to well describe the v -dependence

• Room for a non-zero TMD Boer-Mulders effect

OVERLAP WITH KINEMATIC REACH OF EIC

Fixed-target DIS, RHIC-spin, and EIC are truly complementary

- → Study factorization breaking effects for TMD observables in hadronic collisions
- \rightarrow Important input to study evolution of TMDs and essential kinematic overlap in x-Q² with future EIC
- \rightarrow Extensive kinematic reach of EIC opens new possibilities \rightarrow precision era

Fri Plenary: The electron-ion collider -- A world wide unique collider to unravel the mysteries of visible matter, Elke-Caroline Aschenauer + WG6 session talks

SELECTED FUTURE OPPORTUNITIES

STAR Forward Upgrade:

- p[↑]p[↑], p[↑]Au at 200 GeV 2024, p[↑]p[↑] at 510 GeV 2022
- Forward jet capability and charge-sign discrimination
- Fwd rapidities: TMD measurements at high x
 - Sivers, Transversity at high x + Collins/IFF
- Midrapidity: improve statistics of Sivers via dijet & W/Z, Collins via hadrons in jets

sPHENIX:

- p[↑]p[↑], p[↑]Au at 200 GeV 2024
- Utilizing the jet, heavy flavor (MAPS-based vertex tracker) and direct photon strengths of the sPHENIX barrel to probe:
 - Sivers and Collins effect
 - Nuclear PDFs and FF in midrapidity

COMPASS:

- transversely polarized ⁶LiD target (2022 run)
 - d-quark transversity (and more)

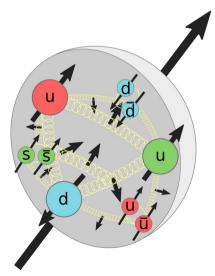
JLab 12 GeV:

- Precision data for valence quarks from CLAS12, HallA/C, SoLID, ...
- **Upgrade perspectives**: positron beam, higher luminosity and energy (JLab 20+ GeV)

SpinQuest at Fermilab:

- Transversely polarized NH₃ /ND₃ target
- Polarized DY experiment with proton beam
 - Sivers & transversity TMDs of sea quarks

LHCspin at CERN:


 Transversely polarized H₂ & D₂ targets with LHCb, 2025+

SPD at JINR: polarized proton and deuteron beams, 2025+

SUMMARY

- Experiments utilizing both lepton scattering processes and hadron-hadron interactions unravel complex nucleon spin structure
- The **3D structure of nucleon** in transverse-momentum and position space is studied using data from various types of **complementary scattering experiments**
- The **Electron Ion Collider will bring precision** in spin structure of nucleons from low to high x
- Exciting times for the Spin and 3D Structure community

Thanks to all speakers and collaboration conveners for providing me with plots, suggestions and comments!

