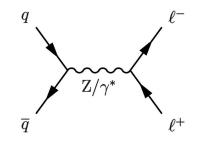
Drell-Yan Measurements at CMS

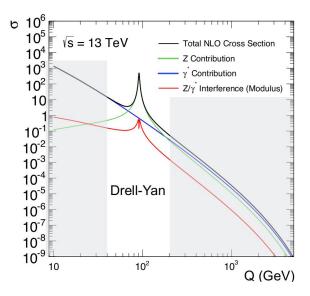
Duong Nguyen

University at Buffalo

XXX International Workshop on Deep-Inelastic Scattering and Related Subjects

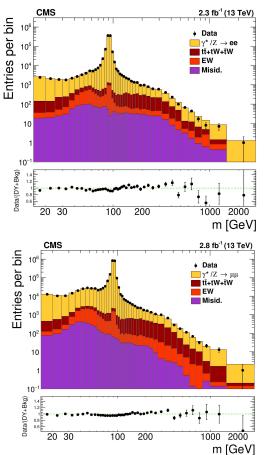
East Lansing, Michigan, USA





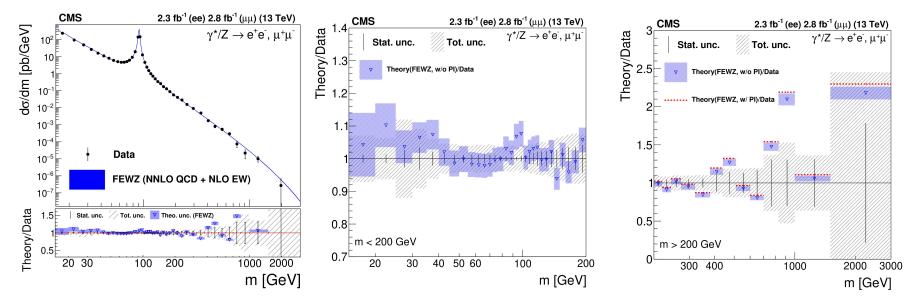
Introduction

- Drell-Yan (DY) process is one of the best understood processes at hadron colliders
 - Precisely measured using clean signatures from leptonic final states
 - Available of many theoretical calculations to describe the process
- The DY measurements at LHC are important:
 - Provide rigorous tests of theoretical predictions
 - Measure weak mixing angle
 - Constrain parton distribution functions (PDFs)
 - Probe existence of new heavy gauge bosons
- CMS DY measurement results at 13 TeV:
 - \circ CMS-SMP-20-003: Transverse momentum of lepton pairs (p^{T}_{_{\it ll}}) in different dilepton mass (m_{_{\it ll}}) ranges
 - JHEP 08 (2022) 063: Forward-backward asymmetry
 - JHEP 12 (2019) 061: Differential Drell-Yan cross section as a function of dilepton rapidity and transverse momentum
 - JHEP 12 (2019) 059: Differential Drell-Yan cross section as a function of dilepton mass


Theoretical predictions

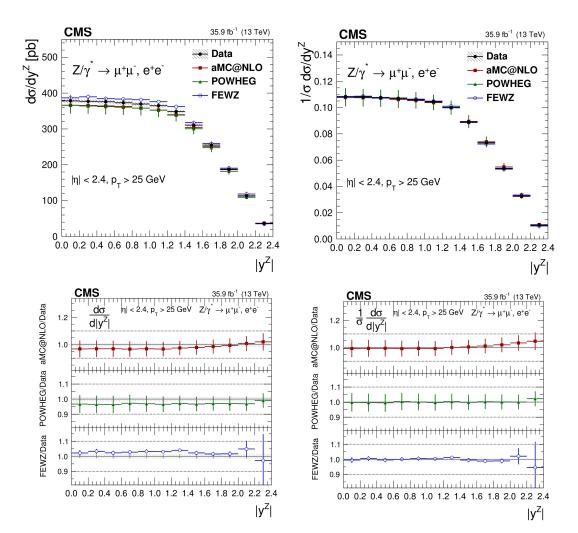
- FEWZ: fixed-order calculation at NNLO in QCD + NLO in EW
- amc@NLO (MG5_aMC) + Pythia8: ME (NLO upto 2 jets) + Pythia8 parton shower model
- CASCADE 3: Z + 0 (1) jet at NLO from MG5_aMC, initial state parton shower from TMD+PB and final state parton shower + hadronization + QED FR from Pythia6
- GENEVA: NNLO + higher-order resummation (NNLL or N³LL on jettiness or q_T variable)
- MiNNLO: NNLO ME and Pythia8 parton shower
- POWHEG: NLO in QCD
- ArTeMiDe: Analytical prediction, NNLO TMD (N³LL)

Dilepton invariant mass

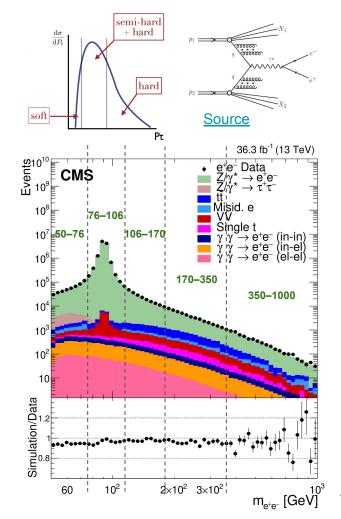

- Measure differential cross section as a function of dilepton invariant mass, do/dm
 - Provide test of perturbative calculations and understanding of DY backgrounds in SM measurements and searches
 - Constrain PDF
- Measured in dielectron and dimuon channels with $p_T > 25$ GeV and $|\eta| < 2.5$
- Good agreement between data and predictions over wide mass range 15 to 3000 GeV

JHEP 12 (2019) 059 CMS-SMP-17-001

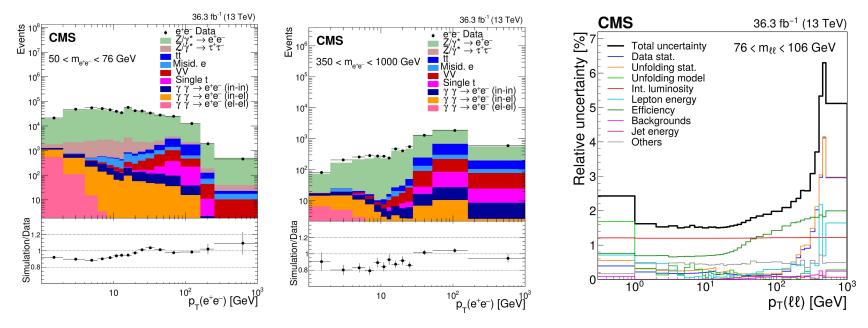
Dilepton invariant mass (cont.)


- Differential cross section in full space (corrected for FSR)
- Good agreement between data and prediction from FEWZ
- Photon-induced contributions has sizeable effect in the high mass region

JHEP 12 (2019) 059 CMS-SMP-17-001

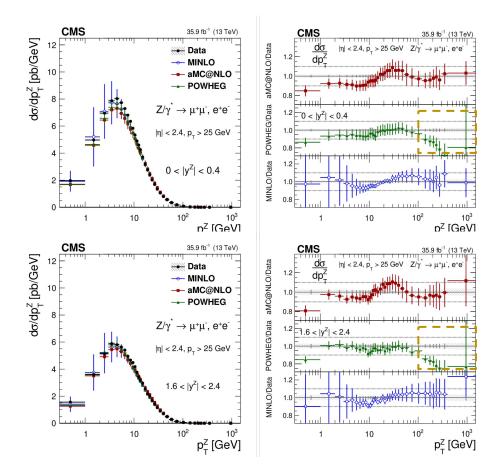

Rapidity (y^Z) distribution

- Provide constraints to light quark and gluon PDF
- Leptons |η| < 2.4 and p_T > 25 GeV, 76 < m_{ℓℓ} < 106
- amc@NLO and POWHEG agree with data within uncertainties
- FEWZ overestimates data by ~5%

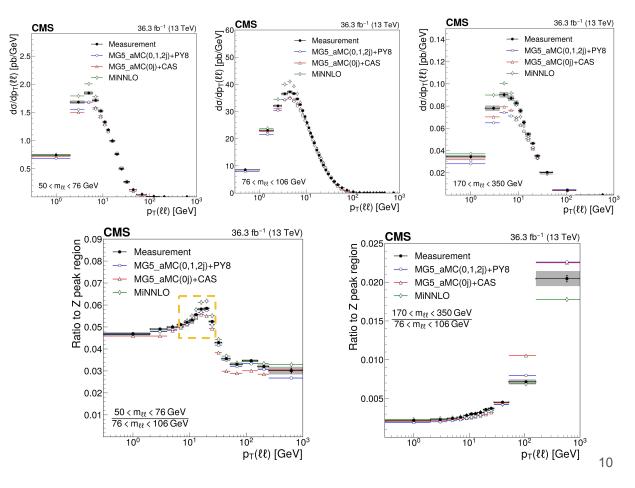

Dilepton transverse momentum

- Dilepton transverse momentum measurement provides insights about soft QCD radiation and hard scattering processes
 - \circ High \textbf{p}_{T} dominated by hard quark-gluon scattering and described by fixed-order pQCD
 - Low p_T governed by the radiation and intrinsic p_T of the initial-state parton. Soft-gluon resummation is required
- Accurate theoretical prediction of p_T distribution is crucial for precise W mass measurement → important to validate theoretical tools to describe p_T
- Measure p_T distributions at different mass and rapidity ranges to understand QCD effects at different mass scales and phase spaces

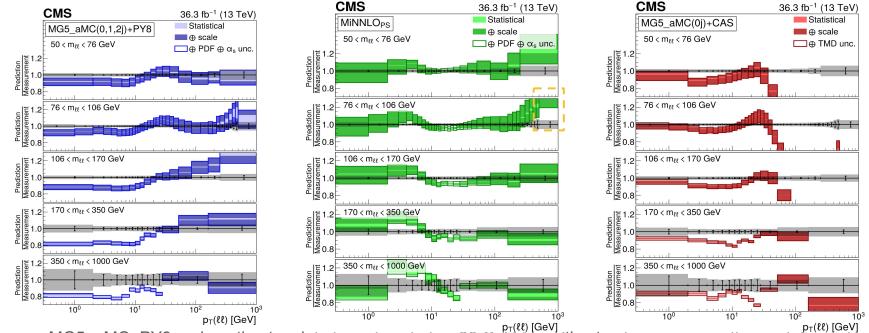
Dilepton transverse momentum measurement


- Selection:
 - Lepton: $p_T > 25 \text{ GeV}, |\eta| < 2.4$
 - Jet (for measurement with jets): $p_T > 30$ GeV, $|\eta| < 2.4$
- The measurement is almost background free
- Precision is limited by lepton efficiency, luminosity and unfolding

8

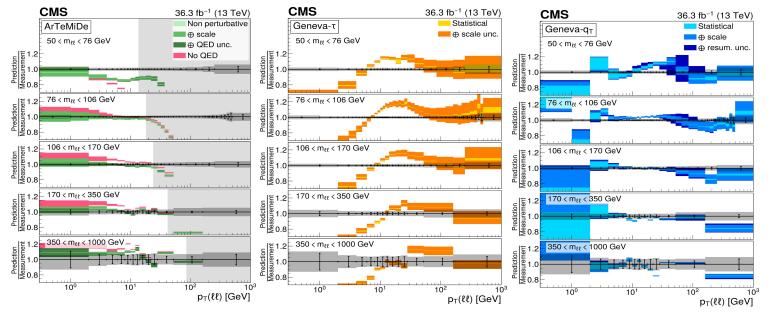

\boldsymbol{p}_{T} at different rapidity ranges

- Data are compared to predictions using parton shower model
- Generally agree with data within uncertainties except for POWHEG in p_T^Z > 100 GeV
- MiNLO provides the best description of data



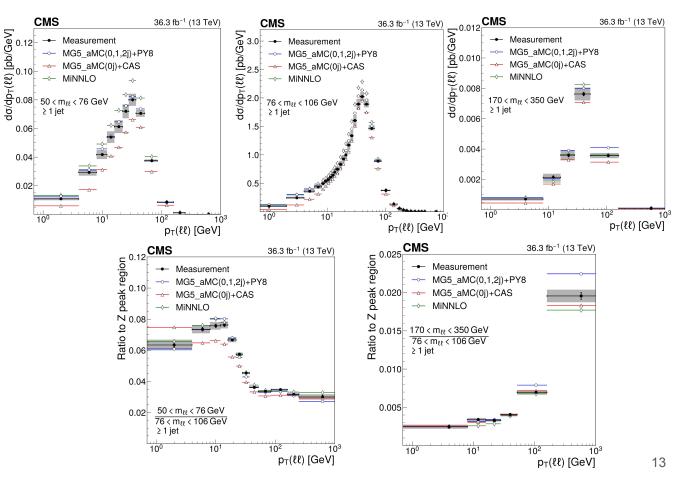
Dilepton transverse momentum at different mass ranges

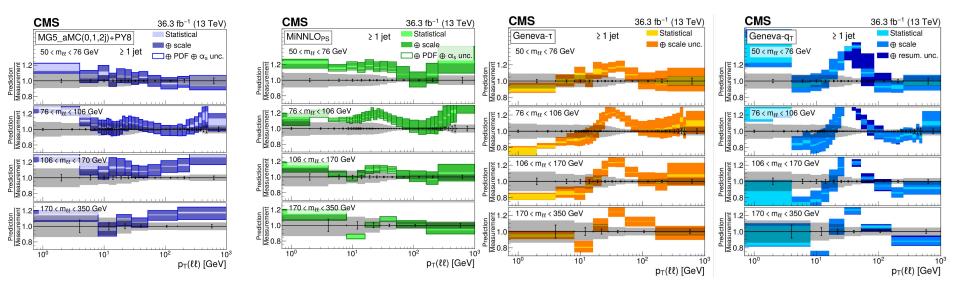
- Peak positions (~4-6 GeV) and rising shape do not change with m_n
- Broader distribution when $m_{\ell\ell}$ increases
- Increasing ratio in lowest m_{ll} range is due to lepton final state QED radiations (migration from Z peak to lower masses)


Dilepton transverse momentum at different mass ranges (cont.)

MG5_aMC+PY8 underestimates data in regions below 30 GeV (sensitive to gluon resummation and dependent on tunes). The effect increases with m_{ell}

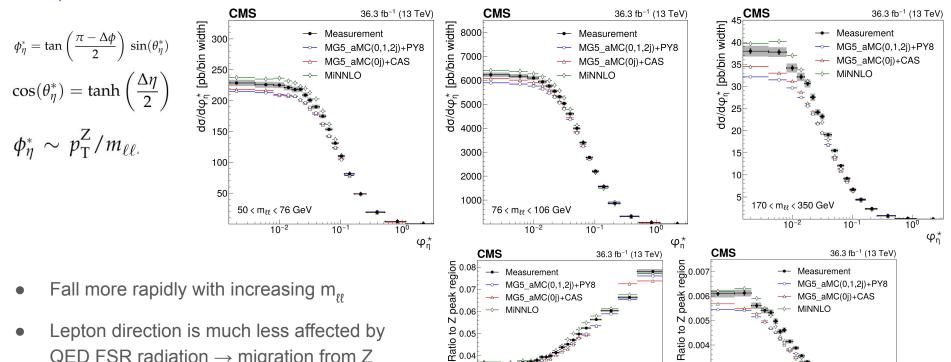
- Best global description of data from MiNNLO_{PS} except above 400 GeV, for m_{il} around the Z boson peak
- CASCADE: better agreement with data at low p_T regions, lower than data by 5-10% at medium regions and fail to describe data at high p_T (missing higher order calculations)


Dilepton transverse momentum at different mass ranges (cont.)


- Data are well-described by ArTeMiDe predictions in low p_T regions (p_T^{ℓℓ} < 0.2 m_{ℓℓ}) except the highest mass bin.
 - Excellent agreement with data for regions under Z peak since use TMD fitted on previous DY measurements at Z boson peak
- GENEVA- τ fails to describe data at $p_{\tau} < 40$ GeV (might be related to the choice of α_{s})
- Significant improvement with GENEVA- q_{τ} (q_{τ} resummation at N³LL)

Dilepton transverse momentum with jet requirement

- Complementary way to investigate initial state QCD radiation with jet requirement (at least one jet with p_T > 30 GeV)
- p_T^{*ll*} is broaden with more hadronic activities than a single jets
- Low p_T sensitive to multiple hard QCD radiation
- Peak position is dictated by jet p_T requirement of greater than 30 GeV
- Rising and falling shape variations at different m_u ranges are similar to the inclusive case



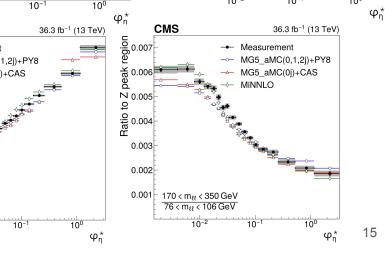
Dilepton transverse momentum with jet requirement (cont.)

- MG5_aMC+Pythia8 and MiNNLO_{PS} generally describe data. MiNNLO is better to describe low p_{τ} shape
- Similar prediction over data ratio for two GENEVA predictions (since q_T resummation applied to 0-jettiness case only)

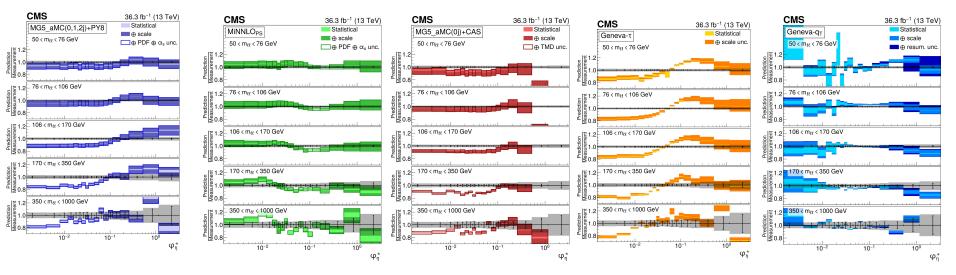
 ϕ_{η}^{*} results

0.03

0.02

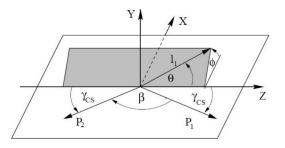

0.01

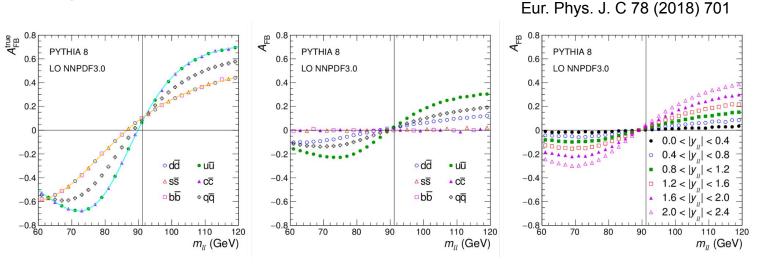
50 < m_{ll} < 76 GeV


76 < m_{ll} < 106 GeV

 10^{-2}

Lepton direction is much less affected by QED FSR radiation \rightarrow migration from Z peak to the lower mass bin is not visible

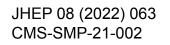

ϕ_η^* results (cont.)

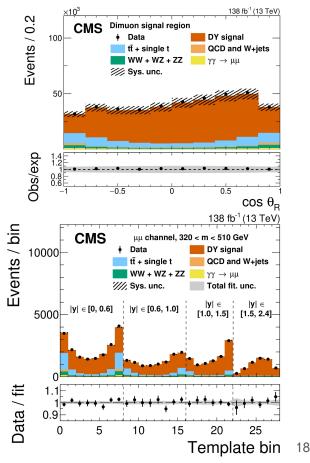

- MG5_aMC + PYTHIA 8: underestimates data in the region sensitive to gluon resummation ($\phi_n^* < 0.1$ on Z boson mass peak)
- MiNNLO: best globally description of data
- MG5_aMC + CASCADE: good agreement with data shape $\phi_n^* < 0.1$ for all mass ranges
- GENEVA-q_{τ} improves predictions to data with respect to GENEVA- τ

Forward-backward asymmetry (A_{FB})

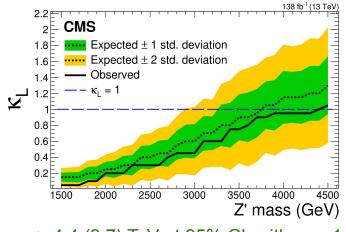
- Interesting property of the DY process originated from vector and axial-vector couplings of EWK bosons to fermions
 - Sensitive to weak mixing angle and new physics (Z')
 - A_{FB} results provide data to constraint PDF
- $\bullet \quad \ \ \mathsf{A}_{\mathsf{FB}} \text{ depends strongly on } \mathsf{m}_{\ell\ell} \text{ and } \mathsf{y}_{\ell\ell}$

 $A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$

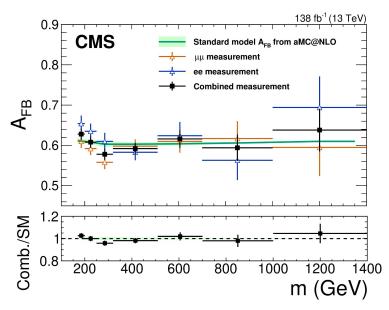



Forward-backward asymmetry (cont.)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right] \quad \frac{3}{8}A_4 = A_{\mathrm{FF}}$$


- Derived using template fits to data
- Three templates: leading order symmetric, next-leading-order symmetric and asymmetric
- A₀ and A_{FB} are defined by linear coefficients
- Dilution effect is corrected in the template fitting

	A _{FB}
Electrons	0.628 ± 0.008 (stat) ± 0.007 (syst)
Muons	0.602 ± 0.006 (stat) ± 0.007 (syst)
Combined	0.612 ± 0.005 (stat) ± 0.007 (syst)
amc@NLO Pred.	0.608 ± 0.006


JHEP 08 (2022) 063 CMS-SMP-21-002

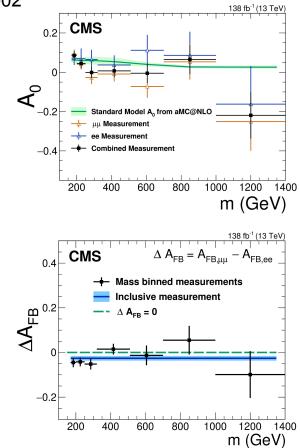
 $\rm m_{Z'}$ > 4.4 (3.7) TeV at 95% CL with $\kappa_{\rm L}$ = 1

- Existence of heavy gauge bosons, Z', changes the asymmetry well below their masses → derive limits on Z' mass
 - Model dependent (depends on couplings of Z')
 - Sequential standard model (same couplings between SM Z and Z')

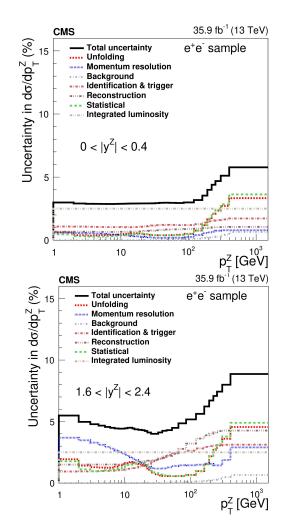
Forward-backward asymmetry (cont.)

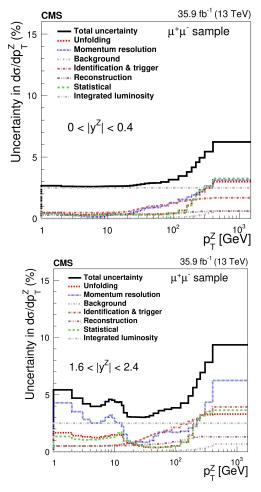
- No significant deviation from SM predictions
- Small difference between electron and muon results
 - Mostly from three low mass bins
 - \circ ~2.4 σ in the inclusive measurement

Summary


- CMS collaboration has performed comprehensive measurements of the DY process at 13 TeV
- The differential cross section as a function of dilepton invariant mass is measured over a wide mass range from 15 3000 GeV and well described by FEWZ
- Dilepton transverse momentum is studied at different dilepton masses to understand the soft QCD radiation and hard scattering in the DY process at different mass scales
 - The results are compared to various predictions using different approaches for soft-gluon resummation
 - Generally, they agree with data in their range of validity
 - MiNNLO provides the best description of data globally
 - The predictions based on TMD approach also describe data well in the regions dominated by soft initial state radiation
- The measured forward-backward asymmetry agrees with SM prediction

Backups


Forward-backward asymmetry


JHEP 08 (2022) 063 SMP-21-002

Source	Unc. on $A_{ m FB}$ (×10 ⁻³)	Frac. of total sys. unc. on $A_{\rm FB}$	Unc. on $\Delta A_{ m FB}$ (×10 ⁻³)	Frac. of total sys. unc. on $\Delta A_{\rm FB}$
PDFs	8.1	47%	0.8	1%
MC and MisID backgrounds stat. unc.	4.1	12%	6.8	42%
$\alpha_S + \mu_F / \mu_R$ scales	3.3	8%	3.2	9%
DY cross section	3.0	7%	0.9	1%
Pileup	2.8	5%	3.8	13%
Fiducial correction	2.7	5%	< 0.1	<1%
t ¯ t cross section	2.7	5%	0.1	<1%
DY $p_{\rm T}$ correction	2.1	3%	0.8	1%
$e\mu$ shape corrections	1.8	2%	0.4	<1%
Integrated luminosity	1.2	1%	1.0	1%
Electron identification/isolation	1.0	1%	2.7	6%
Electron MisID normalization	0.9	1%	4.3	17%
Electron MisID shape	0.8	$<\!1\%$	2.6	6%
b tagging uncertainty	0.8	$<\!1\%$	0.3	<1%
$p_{\rm T}^{\rm miss}$ uncertainties	0.7	$<\!\!1\%$	0.5	<1%
Muon identification/isolation	0.6	<1%	1.2	1%
Muon MisID shape	0.5	$<\!1\%$	0.6	<1%
$\gamma\gamma$ cross section	0.4	$<\!\!1\%$	0.6	<1%
Muon MisID normalization	0.4	<1%	0.1	<1%
Electron trigger	0.4	<1%	1.2	1%
Diboson cross section	0.2	$<\!\!1\%$	0.1	<1%
Electron reconstruction	0.2	$<\!1\%$	0.7	<1%
Muon momentum scale	0.1	<1%	0.1	<1%
Electron momentum scale	0.1	<1%	0.1	<1%
Muon trigger	0.1	$<\!\!1\%$	0.1	<1%

 p_{T}^{Z} uncertainties

23