

Higgs physics: the hunt for precision

A. de Wit, DIS2023, 27.03

CMS and ATLAS at the LHC

The Higgs boson at the LHC

- 10 years since the discovery of the Higgs boson
 - Many of the main production modes and decay channels firmly established experimentally
 - Ever more precise measurements of cross sections, properties

Precision Higgs physics

Precision Higgs physics

JHEP 08 (2022) 175

→ To get a full view of the Higgs boson, need to combine individual analyses that study specific Higgs boson characteristics
→ Also leads to the best precision

Higgs boson production and decay rates

gluon-gluon fusion precision better than 10%!

10-20% precision on other major production modes

Measurement of $\sigma_{tH} \rightarrow$ gaining access to rare production modes

Uncertainties on rare decay branching fractions $(\mu\mu, Z\gamma)$ still sizeable

Higgs boson production and decay rates

What does the Higgs boson have to do with this conference?

Measurement of $\sigma_{tH} \rightarrow$ gaining access to rare production modes

Parameter value Precision on bosonic decays, decays to tau leptons: ~10%

Uncertainties on rare decay branching fractions $(\mu\mu, Z\gamma)$ still sizeable

Nature

Higgs and QCD?

From Massimiliano Grazzini @ 10th anniversary of the Higgs boson discovery symposium https://indico.cern.ch/event/1135177/contributions/4788684/attachments/2474237/4246146/Grazzini_Higgs10.pdf

Higgs and QCD?

From Massimiliano Grazzini @ 10th anniversary of the Higgs boson discovery symposium https://indico.cern.ch/event/1135177/contributions/4788684/attachments/2474237/4246146/Grazzini_Higgs10.pdf

Nature 607 (2022) 60

7

da/dp⊤(H)

Measured σ compatible with SM

Consistent interpretation across processes:

$$\mathscr{L}$$
EFT = \mathscr{L} SM + $\Sigma_j \frac{c_j \mathcal{O}_j}{\Lambda^2}$

e.g. from Higgs boson measurements:

-5

 $\left(\right)$

Parameter value

35.9-137 fb⁻¹ (13 TeV)

8

10

Where are we going?

 \sqrt{s} = 14 TeV, 3000 fb⁻¹ per experiment

- Expectations for HL-LHC from existing measurements
- Assumptions:
 - Efficiencies, resolutions, misidentification rates unchanged from the ~current values
 - Theoretical uncertainties reduced by 1/2
 - Experimental uncertainties scaled down with sqrt(L) until a lower limit is reached

Per-cent level precision on most Higgs couplings, **dominated by theory uncertainties**

Summary

- 10 years after the discovery of the Higgs boson we already have precise experimental measurements of its properties
- Much more to be done → increasing granularity of measurements
- Ultimate precision requires strong interaction with other SM measurements

