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Guido Altarelli (1941-2015)

• Quantum chromodynamics 
“Asymptotic freedom in parton language”


Altarelli-Parisi equation


• Precision electroweak physics 
• Neutrino physics 
• Polarized proton structure 

“The anomalous gluon contribution (△G) to 
polarized leptoproduction”


• Grand unified theory 

• Small-x physics 

• … …

“A leading figure of modern particle physics who contributed 
to almost all the relevant aspects of the Standard Theory.”

Maiani and Martinelli, Ann.Rev.Nucl.Part.Sci. 68 (2018)
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“Asymptotic freedom in parton language”

G. Altarelli, G. Parisi / Asymptotic freedom 307 

photons. In this case 9GG ~ ~'r'r ~ 6(z -- 1) because of  the absence of a 37 coup- 
ling. The replacement of  a by a(t) in QCD guarantees that for sufficiently large t 
the master equations will eventually become reliable. These master equations can 
provide a useful insight in connection with problems that cannot be approached by 
light-cone expansion. 

4. Calculation of logarithmic exponents. Spin averaged case 

In this section we show that the functions P(z) introduced in the previous section 
can be directly computed from the simple knowledge of  the basic vertices of QCD. 
The method used is an extension of  the yon Weizsacker-WiUiams result in quantum 
electrodynamics [8]. In that case the equivalent number of  photons inside an elec- 
tron with fraction z of  the electron momentum is evaluated to order a and contains 
a factor of  In E/me, which plays the same role as t = In Q2/Q2 o in our case. 

We first compute the functions P(z) at z < 1 while we shall deal, at the end, with 
6 function singularities at z = 1. We want to evaluate the probability of  finding a 
particle B inside a particle A with fraction z of  the longitudinal momentum of A in 
the p~ frame to lowest order in a: 

Ot 
d 9  BA(Z) dz = ~ PBA(Z) dz d t .  (41) 

Let C be the third particle in the bare vertex where A and B appear. We can 
identify the above probability by comparing the cross sections for the two processes 
in fig. 1, where D is a given particle and f any final state. We define the general S- 
matrix element as 

Sij - ~ij : 2~i~(E] - El )  Mij  ~I  ( 2 g k ) -  1/2 , (42) 
k 

where the index k runs over all external particles. Although by no means necessary, 
we find it particularly useful to phrase our calculation in terms of  the "old"  pertur- 
bation theory which is best suited for a discussion of leading terms in the p~ frame. 
The contribution to Mi/in eq. (42) of  a given intermediate state B to the process in 

A C 
.O .  . b .  

Fig. 1. (a) Contribution of the B intermediate state to the process A + D ~ C + f. (b) The pro- 
cessB + D ~ f .  

The Weizsacker-Williams approximation, or equivalent photon approximation, was 
used to justify the physical meaning of gluon spin in the infinite momentum frame:

• X. Ji, Y. Xu, and YZ, JHEP 08 (2012);

• X. Ji, J.-H. Zhang and YZ, PRL 111 (2013).

Jaffe-Manohar sum rule and its physical significance A LaMET Approach for Lattice Calculation Outlook Summary

Physical significance of the Jaffe-Manohar sum rule

Weizsäcker-Williams approximation

• For a static charge, the electric field is purely longitudinal (the photon
field is purely virtual): ~E = ~Ek = ~r', ~r⇥ ~Ek = 0;

• As the charge moves with velocity �, the field lines contract in the
transverse direction;

• The moving charge generates ~B = ~r⇥ ~A = ~r⇥ ~A?, while the changing
~A? in turn generates ~E? = �(@/@t)~A?;

• ~E? (~B) gets enchanced by a factor of � (��), while ~Ek is suppressed by
a factor of ��2 (� = 1/

p
1 � �2).

TQHN Yong Zhao

Static charge Moving charge

G. Altarelli and G. Parisi, NPB 126 (1977).

ΔG = ⟨P∞ | (E × A)3 |∇⋅A=0 |P∞⟩



The infinite momentum frame picture, where the parton 
model was originally introduced, motivated a new method 

to compute parton physics in lattice QCD!

Q̃(Pz, ΛUV) = C( μ
Pz

,
ΛUV

μ ) ⊗ Q(μ) + c1
ΛQCD

Pz
+ c2

Λ2
QCD

P2
z

+ … ?Q(μ)

Q̃(Pz, ΛUV) ≡ ⟨P | Õ(ΛUV) |P⟩

: ultraviolet (UV) cutoff, ΛUV ∼
2π
a

Partonic observableEuclidean observable

Q(μ) ≡ ⟨P∞ |O(μ) |P∞⟩

:  scale. No  dependence.μ MS Pz

 Lorentz boost∞(Pz ≪ ΛUV) (Pz
∞ ≫ ΛUV)

✘ ∵  and  usually do not commute.Pz ≪ ΛUV Pz ≫ ΛUV
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• X. Ji, PRL 110 (2013); SCPMA 57 (2014). 

• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, Rev.Mod.Phys. 93 (2021).

“Large-momentum effective theory (LaMET)”:  
a recipe for systematically controlled calculation of parton physics

Perturbative matching Power corrections



The gluon helicity ΔG

=
1
2

ΔΣ
2

ΔG = ?

lq + lg

S̃G(Pz, μ) =
⟨PS | (E × A)3 |PS⟩

2Sz
∇⋅A=0

• X. Ji, J.-H. Zhang, and YZ, PRL 111 (2013); 

• Y. Hatta, X. Ji and YZ, PRD 89 (2014);

• X. Ji, J.-H. Zhang, and YZ, PLB 743 (2015).

RHIC spin program and EIC

Y.-B. Yang, R. Sufian, YZ, et al. PRL 118 (2017)
Pz /GeV

S̃G(Pz, Q2 =10 GeV2)

The first lattice result

S̃G(Pz, μ) = C(Pz, μ) ⊗ (ΔΣ, ΔG) +𝒪(Λ2
QCD/P2

z )



Benchmark: lattice calculation of the PDFs

X. Ji, Phys. Rev. Lett. 110 (2013)

Lorentz boost
z

t
pn

z/2�z/2

� �zp
2

�zp
2

A quasi-PDF  to expand fromf̃(x, Pz)

f̃(y, Pz, ΛUV) = ∫
1

−1

dx
|x |

C ( y
x

,
μ
Pz

,
ΛUV

μ ) f(x, μ) + 𝒪 (
Λ2

QCD

P2
z )LaMET expansion:

X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014).

First exploratory lattice calculation
H.W. Lin et al.,  (LP3), PRD 91 (2015).
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making Mn

N/Pn
z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
the nonlocal operator in Eq. 1 can be expanded asP1

n=1 Cn(z)On(0), where the tree-level Wilson coe�-

cient Cn(z) = (iz)n�1
/ (n� 1)! + O(↵s) and On(0) =

 ̄(0)�z (iDz)n�1
 (0). The tensor On is symmetric but

not traceless, so it is a mixture of a twist-2 and higher-
twist operators with the matrix element

D
~P

���On(0)
���~P

E
= 2anP

n
z Kn +O(⇤2

QCD/P
2
z ) (4)

entirely expressible in terms of an =
R
dx x

n�1
q(x), the

n
th moment of the desired parton distribution, and Kn =

1+
Pimax

i=1 C
n�i
i (M2

N/4P 2
z )

i where C is the binomial func-

tion, and imax = n�(n mod 2)
2 . The O(⇤2

QCD/P
2
z ) term is

dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2

N/4P 2
z .

After one-loop and nucleon-mass corrections, the re-
sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced Pz dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].
As a compromise, we take ↵s = 0.20±0.04, with the central value
determined by the prescription of Ref. [15] and the uncertainty
included as a part of the theoretical systematics.

MSTW
CJ12
Lattice
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a Pz-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD/P
2
z ), which is expected to be smaller than the

nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a Pz-independent distribution by tak-
ing into account the O(⇤2

QCD/P
2
z ) correction by extrap-

olating using the form a + b/P
2
z . The final unpolarized

distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-

quarkantiquark



Renormalization and matching

• Rigorous derivation of the exact form of matching formula.


• Non-perturbative renormalization.


• NNLO matching (for non-singlet quark case).


• Direct power expansion in parton momenta in x-space.

f(x, μ) = ∫
∞

−∞

dy
|y |

C̄ ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )

Reliable prediction within [xmin, xmax] at a given finite Pz !

• Chen, Zhu and Wang, PRL. 126 (2021);

• Li, Ma and Qiu, PRL 126 (2021).

T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, PRD 98 (2018)

1 + ξ2

1 − ξ
ln

μ2

(yPz)2
, ξ =

x
y

Altarelli-Parisi splitting kernel

• X. Ji, J.-H. Zhang and YZ, PRL 120 (2018);

• Ishikawa, Ma, Qiu and Yoshida, PRD 96 (2017);

• Green, Jansen and Steffens, PRL 121 (2018);

• Constantinou and Panagopoulos, PRD 96 (2017);

• I. Stewart and YZ, PRD 97 (2018);

• X. Ji, YZ, et al., NPB 964 (2021).



State-of-the-art calculation of pion valence PDF
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• JAM21nlo, PRL 127 (2021);

• xFitter (2020), PRD 102 (2020);

• ASV, PRL 105 (2010);

• GRVPI1, ZPC 53 (1992);

• BNL20, X. Gao, N. Karthik, YZ, et al., PRD 102 (2020).

Super fine lattice spacing (a=0.04 fm and 0.06 fm), high momentum 
(Pz=2.42 GeV v.s. mπ=300 MeV), high statistics, first NNLO matching

Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, PRL128 (2022).



Towards better systematic control
• Lattice simulation: larger Pz (excited states), spacing a→0 

(renormalization), physical mπ, lattice size L→∞, etc.


• Perturbative theory: resummations at end-point regions.


• x-space:


• Coordinate space:


• Renormalons and power corrections: 
Renormalon resummation improves determination of Wilson line mass 
correction and perturbative convergence.

Resummation of αs ln[μ2/(2xPz)2], αs ln(1 − x)

Resummation of αs ln[μ2z2], αm
s lnn NX. Gao, K. Lee, and YZ et al., PRD 103 (2021).

f(x, μ) = ∫
∞

−∞

dy
|y |

C̄ ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪(

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )

h̃(λ = zPz, z2μ2) =
∞

∑
n=0

Cn(z2μ2)
(−iλ)n

n!
an(μ) + 𝒪(z2Λ2

QCD) ,

J. Holligan, X. Ji, et al., submitted to journal.
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Figure 5: Value of m0 parameter with original method and with LRR method.
The renormalon is fitted in the range [zmin, zmin + 0.06 fm]

Jack Holligan (UMD) LaMET 11 Aug ’22 13 / 23

J. Holligan, X. Ji, et al., submitted to journal.



First lattice calculations at NLO:

4

and within the reported uncertainties. Convergence is
also observed for E-GPD for the two highest momenta
and the region x > 0. We note that the statistical errors
on E-GPD are larger than those of the H-GPD, a fea-
ture already observed in FE . We refer the Reader to the
supplement for more details.

-1 -0.5 0 0.5 1

0

2

4

FIG. 1: H-GPD (blue band) and unpolarized PDF (violet
band) for P3 = 1.67 GeV and zero skewness.
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2

4

FIG. 2: eH-GPD (blue band) and helicity PDF (violet band)
for P3 = 1.67 GeV and zero skewness.

Our final results for P3 = 1.67 GeV, t = �0.69 GeV2,
and zero skewness are shown in Fig. 1 and Fig. 2 for
the unpolarized and helicity GPDs, respectively. For
each case, we compare the GPDs with the corresponding
PDFs, that is f1(x) for the unpolarized, and g1(x) for
the helicity. We observe that the GPDs are suppressed
in magnitude as compared to their respective PDFs for
all values of x . 0.7. In fact, eH-GPD has a steeper slope
at small x values. The smaller magnitude of the GPDs
is a feature also observed in the standard FFs, which
decay with increasing �t. For the large-x region, both
distributions decay to zero in the same way. The large-x
behavior of the unpolarized GPD is in agreement with
the power counting analysis of Ref. [121]. For the anti-
quark region, we find that the GPDs are compatible with

the corresponding PDFs. We note that the statistical un-
certainties of GPDs are similar to the PDFs, allowing for
such qualitative comparison.

The extraction of the GPDs for ⇠ 6= 0 di↵ers from the
one for ⇠ = 0, as a di↵erent matching kernel is required.
Also, unlike the ⇠ = 0 case, both helicity GPDs con-
tribute to the matrix element, and therefore a decom-
position is required. The comparison between the zero
and non-zero skewness is shown in Fig. 3 and Fig. 4, for
P3 = 1.25 GeV. The main feature of the GPDs at ⇠ 6= 0
is that an ERBL region (|x| < 1/3 in our case) appears,
di↵erentiating it from the DGLAP region (|x| > 1/3).
The behavior of the GPDs as a function of t for a fixed
x is as expected; increasing �t suppresses the GPDs.

-1 -0.5 0 0.5 1

0

1

2

3

FIG. 3: H-GPD for ⇠ = 0 (blue band) and ⇠ = |1/3| (green
band), as well as the unpolarized PDF (violet band) for P3 =
1.25 GeV. The area between the vertical dashed lines is the
ERBL region.
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FIG. 4: eH-GPD for ⇠ = 0 (blue band) and ⇠ = |1/3| (green
band), as well as the helicity PDF (violet band) for P3 = 1.25
GeV. The area between the vertical dashed lines is the ERBL
region.

Concluding remarks. We presented first results on the
unpolarized and helicity GPDs for the proton, employ-
ing the quasi-distribution approach, which has been very

C. Alexandrou et al. (ETMC), PRL 125 (2020). H.-W. Lin, PRL 127 (2021).
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FIG. 4: (Left) Nucleon tomography: three-dimensional impact parameter–dependent parton distribution as a function of x and
b using lattice H at physical pion mass. (Right) The two-dimensional impact-parameter–dependent distribution for x = 0.3,
0.5 and 0.7.

special limit ⇠ = 0. There are residual lattice system-
atics are not yet included in the current calculation: In
our past studies, we found the finite-volume e↵ects to be
negligible for isovector nucleon quasi-distributions cal-
culated within the range Mval

⇡ L 2 {3.3, 5.5}. We an-
ticipate such systematics should be small compared to
the statistical errors. The lattice discretization has been
studied by MSULat collaboration in Refs. [89, 105] with
multiple lattice spacings in the LaMET study of pion
and kaon distribution amplitudes and PDFs; similarly,
a comparison of nucleon isovector PDFs with 0.045 and
0.12 fm lattice spacing is shown in supplementary ma-
terials. There was mild lattice-spacing dependence for a
majority of the Wilson-link displacements studied with
similar largest boost momenta with same valence/sea lat-
tice setup. EMTC also report LaMET isovector nucleon
PDFs in Ref. [140] using twisted-mass fermion actions
and reports di↵erent findings. Future work will investi-
gate ensembles with smaller lattice spacing to reach even
higher boost momentum (either directly or with the aid
of machine learning [106]) so that we can push toward
reliable determination of the smaller-x and antiquark re-
gions.

We thank the MILC Collaboration for sharing the lat-
tices used to perform this study. The LQCD calculations
were performed using the Chroma software suite [141].
This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE O�ce of Sci-
ence User Facility supported by the O�ce of Science
of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231 through ERCAP; facilities of the
USQCD Collaboration, which are funded by the O�ce of
Science of the U.S. Department of Energy, and supported
in part by Michigan State University through compu-
tational resources provided by the Institute for Cyber-
Enabled Research (iCER). The work of HL is partially
supported by the US National Science Foundation un-
der grant PHY 1653405 “CAREER: Constraining Par-
ton Distribution Functions for New-Physics Searches”
and by the Research Corporation for Science Advance-
ment through the Cottrell Scholar Award “Unveiling the

Three-Dimensional Structure of Nucleons”.
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Recent advancement in extracting GPDs from less computationally 
expensive lattice matrix elements in the asymmetric frame.

First attempt for twist-3 GPDs also made:

See Dr. Xiang Gao and Martha Constantinou’s parallel talks on Tue.

14

What? Why? How?

Background

All 
momentum transfer to source

• Perform Lattice QCD calculations of GPDs in asymmetric frames

Resolution:

Bhattacharya, Cichy, Constantinou, Dodson, Gao, Metz, Mukherjee, 
Scapellato, Steffens, and YZ, PRD 106 (2022).

S. Bhattacharya et al. (ETMC), PRD 102 (2020).

Generalized Parton Distributions (GPDs)



Lattice calculations of TMD physics

✴ Collins-Soper kernel ; 

✴ Flavor separation; 

✴ Spin-dependence, e.g., Sivers function; 

✴ Full TMD kinematic dependence in . 

✴ Twist-3 PDFs from small bT expansion of TMDs.

K(μ, bT)

(x, bT)

Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

× f [s]
i/p (x, bT, μ, ζ){1 + 𝒪[ 1

(xP̃zbT)2
,

Λ2
QCD

(xP̃z)2 ]}

f̃ naive[s]
i/p (x, bT, μ, P̃z)

Sq
r (bT, μ)

= C(μ, xP̃z) exp[ 1
2

K(μ, bT)ln
(2xP̃z)2

ζ ]
Reduced soft function ✓

X. Ji, Y.-S. Liu and Y. Liu, NPB 955 (2020),  PLB 811 (2020).
• X. Ji, Sun, Xiong and Yuan, PRD 91 (2015);

• X. Ji, Jin, Yuan, Zhang and YZ, PRD 99 (2019);

• Ebert, Stewart, YZ, PRD  99 (2019).

• Ebert, Stewart, YZ, JHEP 09 (2019);

• X. Ji, Y.-S. Liu and Y. Liu, NPB 955 (2020),  PLB 811 (2020).

• Vladimirov and Schäfer, PRD 101 (2020);

• Ebert, Schindler, Stewart and YZ, JHEP 04 (2022). 



Comparison between lattice results and global fits
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Collins-Soper kernel for TMD evolution
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functions
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wavefunctions

Q.-A. Zhang, et al. (LPC20),

Phys.Rev.Lett. 125 (2020).
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(SVZES21),
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FIG. 2. Comparison of CS kernels extracted from differ-

ent combinations of the pseudo-data. The top plot shows all

possible (twelve) combinations of pseudo-data with different

kinematics, listed in the table I. The bottom plot show ex-

tractions made with different input collinear PDFs. The solid

lines are the central values. The shaded areas are the statis-

tical uncertainty. The oscillations at b ⇠ 4� 6GeV
�1

are due

to the finite bin size in the qT -space. The gray dashed line in

the lower plot shows the effect of incomplete cancellation of

parton’s momentum if PDFs in the comparing cross-section

are different (here, CT18 vs. CASCADE).

tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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See also Dr. Yong Zhao's parallel talk on Thu.



Reduced soft factor for full TMD calculation

Q.-A. Zhang, et al. (LPC), PRL 125 (2020).
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1
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p
ZE(2`, b?)

X

x

Trei
~P ·~x

⇥ hS
†
w(~x+~b, t, 0;�~p)W(~b, `)�5��Sw(~x, t, 0;P

z
� ~p)i

=
Aw(pz)Ap

2E
e
�Et

�`(0, b?, P
z
, `)(1 + c0e

��Et), (15)

where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.
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Figure 2. The lattice results of S(b⊥) for various momenta,
together with the one-loop perturbative result S1−loop

MS
and its

variant S′1−loop
MS

with ↵s including up to 4 loops. The scale µ

in Eq. (17) is set as µ = 2 GeV.

cancelling the dominant higher-twist e↵ects, the results
become much more consistent. The residual deviations
serve as measure of important systematic e↵ects to be
controlled in future studies.

Results of the soft function – After checking the
consistency among the various improved pion matrix ele-
ments, we use the choice of 1

2
(F�5�1 + F�1) as an example

to present the results of S(b⊥) for various momenta P z

and pion masses m⇡
vi.

In Fig. 2, S(b⊥, P z
) is shown together with the one-

loop perturbative curve [35],

S
MS
(b⊥, µ) = 1 − ↵sCF

⇡
ln

µ2b2⊥
4e−2�E

+O(↵2

s), (17)

where one-loop and four-loop values of ↵s are used at the
physically most relevant scale of S(b⊥), i.e. 1�b⊥. The
scale µ is set as µ = 2 GeV. We note that the lattice re-
sults agree qualitatively with the perturbative function
at around b⊥ ∼ 0.2 fm, particularly at the largest boost
and when the higher-order e↵ects are partially included
via ↵s. At larger b⊥, non-perturbative features start to
set in and the decay of S(b⊥) is slower than the pertur-
bative prediction. It is also noteworthy that the conver-
gence of the lattice results in P z clearly increases with
b⊥ – the results from the two largest P z are compatible
for b⊥ � 0.2 fm, while smaller transverse separations will
need yet larger boosts to establish convergence.

In Fig. 3, we examine the pion mass dependence of
the soft function. Although S(b⊥) is extracted from pion
matrix elements which depend on the detailed process
of ⇡(P z

) → ⇡(−P z
), the factorization allows us to can-

cel this process dependence. Performing the calculation
at four pion masses, we find that the lattice results are
generally consistent within statistical errors, although a
small systematic increase is found when decreasing m⇡.
This observation supports the statement from the factor-
ization [17] that the soft function does not depend on the

Figure 3. The intrinsic soft function S(b⊥) for the pion masses
ranging from 827 MeV to 350 MeV. Here, we show results
calculated at the momentum P

z = 5 2⇡
L

as an example.

detailed hadronic information from the initial/final state.
Results for the Collins-Soper kernel – The

Collins-Soper kernel K(b⊥, µ) governs the rapidity evo-
lution of the TMDPFs. In LaMET, the quasi-TMDPDF
is factorized into the light-cone TMDPDF and a
K(b⊥, µ) ln(⇣z�⇣) factor, where ⇣z = 2(xP z

)
2, with P z

playing the role of the rapidity, while ⇣ is the light-cone
counterpart of ⇣z [36]. Thus, by taking the ratio of quasi-
TMDPDFs at di↵erent values of P z, one can extract
K(b⊥, µ). This ratio can also be expressed in terms of
the quasi-TMDWFs [18] as

K(b⊥, µ) = lim
l→∞

1

ln(P z
1
�P z

2
)
ln �

�(b⊥, l, P z
1
)�E1

�(b⊥, l, P z
2
)�E2

�

=
1

ln(P z
1
�P z

2
)
ln

������������

Cwf
��
(b⊥, P z

1
)

Cwf
��
(b⊥, P z

2
)

Cwf
��
(0, P z

2
)

Cwf
��
(0, P z

1
)

������������

. (18)

Figure 4. The lattice results for the Collins-Soper kernel
K(b⊥, µ) from various calculations, described by the color of
yellow [20], blue [19], green [18] and red. The results from
a same calculation are shifted horizontally to make an easier
comparison.

In Fig. 4, the lattice results of K(b⊥, µ) from this work

Y. Li et al. (ETMC/PKU), PRL 128 (2022).

a = 0.10 fm, mπ = 547 MeV, Pz
max = 2.11 GeV a = 0.09 fm, mπ = 827 MeV, Pz

max = 3.3 GeV

⟨π(−P) | j1(bT)j2(0) |π(P)⟩ Pz≫mπ= Sr
q(bT, μ)∫ dxdx′￼ H(x, x′￼, μ)

× Φ†(x, bT, Pz)Φ(x′￼, bT, Pz)

First lattice calculations at LO:
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly

23

NNPDF, EPJ C77 (2017)

W. Armstrong et al., arXiv: 1708.00888.

Wigner distributions/
Generalized TMDs

Parton Distribution Functions Transvers momentum distributions

Generalized parton distributions
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Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Cammarota, et al. (JAM), PRD 102 (2020).

Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.

y

xp

x
z

bΤ

Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-

17

kT

W(x, ⃗kT, b⃗T)

∫ d2 ⃗kT

∫ d2 ⃗kT

∫ d2b⃗T ∫ d2b⃗T

xf(x)

3D Imaging of the Nucleon


