## Far-Forward Detectors and Physics with ePIC @ the EIC

Alex Jentsch, on behalf of the ePIC Collaboration

30 ${ }^{\text {th }}$ International Workshop on Deep-Inelastic
Scattering and Related Subjects
March 27th-31st, 2023
Mishigan State University
East Lansing, Michigan

## What is meant by Far-Forward?



## What is meant by Far-Forward?



## What is meant by Far-Forward?

hadronic calorimeters
solenoid coils
e/m calorimeters

| MAPS tracker MPG trackers | ToF, DIRC, RICH detectors |
| :--- | :--- |

## Overall detector requirements:

- Large rapidity $(-4<\eta<4)$ coverage; and far beyond in far-forward/far-backward detector regions

Rapidity is related to the polar angle $\rightarrow 0<\eta<4$ equates to $2.1^{\circ}<\theta<90^{\circ} \quad \eta=-\ln (\tan (\theta / 2))$ pseudorapidity


## What is meant by Far-Forward?

hadronic calorimeters
solenoid coils
e/m calorimeters


Scattered (detected) particles

## Overall detector requirements:

- Large rapidity $(-4<\eta<4)$ coverage; and far beyond in far-forward/far-backward detector regions

Rapidity is related to the polar angle $\rightarrow 0<\eta<4$ equates to $2.1^{\circ}<\theta<90^{\circ} \quad \eta=-\ln (\tan (\theta / 2))$ pseudorapidity

Far-forward here means $\theta<2.1^{\circ}$ (~37 mrad)

## What is meant by Far-Forward?

hadronic calorimeters
solenoid coils
e/m calorimeters

| MAPS tracker MPG trackers ToF, DIRC, RICH detectors |
| :---: | :---: | :---: | :---: |

## Overall detector requirements:

- Large rapidity $(-4<\eta<4)$ coverage; and far beyond in far-forward/far-backward detector regions

Rapidity is related to the polar angle $\rightarrow 0<\eta<4$ equates to $2.1^{\circ}<\theta<90^{\circ} \quad \eta=-\ln (\tan (\theta / 2))$ pseudorapidity


EIC Physics in the Far-Forward Region

## (some) Far-Forward Processes at the EIC



Sullivan process

e+d exclusive J/Psi with $p / n$ tagging


Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei

coherent/incoherent $\mathrm{J} / \psi$ production in $\mathrm{e}+\mathrm{A}$

u-channel backward exclusive electroproduction


## 

## Sullivan process


e+d exclusive J/Psi with $p / n$ tagging


Quasi-elastic electron scattering

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020) [2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021)
[3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104, 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)
coherent/incoherent $\mathrm{J} / \psi$ production in $\mathrm{e}+\mathrm{A}$

u-channel backward exclusive electroproduction
Backnard-angartorization
spectator tagging in light nuclei
")


## (some) Far-Forward Physics at the EIC

>Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ( $\eta>4.5$ ).
$>$ Different final states require tailored detector subsystems.
$>$ Various collision systems (e.g. e+p, e+d, e+Au) provide unique challenges.
>Integration of EIC far-forward detectors uniquely challenging due to presence of machine components, space constraint, apertures, etc.

# The epiç Far-Forward Detectors 

BO Silicon Tracker and EMCAL


| Detector | Acceptance |
| :---: | :---: |
| Zero-Degree Calorimeter (ZDC) | $\boldsymbol{\theta}<5.5 \mathrm{mrad}(\eta>6)$ |
| Roman Pots (2 stations) | $0.0^{*}<\boldsymbol{\theta}<5.0 \mathrm{mrad}(\eta>6)$ |
| Off-Momentum Detectors (2 stations) | $0.0<\boldsymbol{\theta}<5.0 \mathrm{mrad}(\eta>6)$ |

## B0 Tracking and EMCAL Detectors



## B0 Tracking and EMCAL Detectors



This is the opening where the detector planes will be inserted


Credit: Ron Lassiter and Karim Hamdi

## B0 Tracking and EMCAL Detectors

## (behind tracker)



- https://indico.bnl.gov/event/18001/


## Roman "Pots" @ the EIC



- Technology
$>$ 500um, pixilated AC-LGAD sensor provides both fine pixilation.
> "Potless" design concept with thin RF foils surrounding detector components.
$>$ Status
$\checkmark$ Acceptance: $0.0^{*}<\theta<5.0$ mrad (lower bound depends on optics).
$\checkmark$ Detector directly in-vacuum a challenge for both detector and beam $\rightarrow$ impedance studies underway.
$\checkmark$ Approved generic R\&D to develop moreadaptive reconstruction code!

ML + Roman Pots: See talk by D. Ruth WG6; Tuesday @ 2pm

## Off-Momentum Detectors

Off-momentum detectors implemented as horizontal "Roman Pots" style sensors.

```
Protons
```

Protons
123.75 < E < 151.25 GeV
123.75 < E < 151.25 GeV
(45% < xL < 55%)
(45% < xL < 55%)
0<0}<5\textrm{mrad

```
0<0}<5\textrm{mrad
```

123.75 < E < 151.25 GeV
( $45 \%<x L<55 \%$ )
$0<\theta<5 \mathrm{mrad}$

## Roman Pots and Off-Momentum Detectors

Initial step file
Updated model in NX with different beamtube size inspired by STAR

Credit: Ron Lassiter


## Roman Pots and Off-Momentum Detectors

Initial step file
Updated model in NX with different beamtube size inspired by STAR

Credit: Ron Lassiter


## Summary of Detector Performance (Trackers)




- Includes realistic considerations for pixel sizes and materials
- Work needed on support structure.
- Roman Pots/OMDs suffer from additional smearing due to improper transfer matrix reconstruction.

ML + Roman Pots: See talk by D. Ruth WG6; Tuesday @ 2pm

## Summary of Detector Performance (Trackers)




- All beam effects included!
- Angular divergence.
- Crossing angle.
- Crab rotation/vertex smearing.


## Beam effects the dominant source of momentum smearing!

## Zero-Degree Calorimeter

> Status
64 Layers
$\checkmark 30 \mathrm{~m}$ from IR
$\checkmark$ Detect spectator neutrons (HCAL) \& photons (EMCAL)
$\checkmark$ Acceptance: +4.5 mrad, -5.5mrad (aperture limits)
$\checkmark$ Position resolution $\sim 1.3 \mathrm{~mm}$ at 40 GeV
$\checkmark$ Meets requirements from Yellow Report.
$60 \mathrm{~cm} \times 60 \mathrm{~cm} \times 168 \mathrm{~cm}$
$\checkmark$ Lots of work to do on shower reconstruction with imaging layers.

## Zero-Degree Calorimeter



## Zero-Degree Calorimeter

Photon energy resolution


Neutron energy resolution


- Meets basic physics requirements from the Yellow Report.
- Optimization work needed on imaging system.


## Credit to Shima Shimizu (JSPS/RIKEN)

## Summary and Takeaways

- Far-forward physics characterized by exclusive+diffractive final states.
- Lots to unpack! - proton spin, neutron structure, saturation, partonic imaging, meson structure, etc.
- There is lots of interest in the EIC community in studying this physics via these final states!
- Exciting time to get involved $\rightarrow$ Need the detectors and software to do any physics!

Email me if you have any questions: ajentsch@bnl.gov

```
Want to get involved?? Join our meetings and learn how!
Meeting time: Tuesdays @ 9am EDT (bi-weekly, or weekly, as needed)
Indico: https://indico.bnl.gov/category/407/
Wiki: https://wiki.bnl.gov/eic-project-detector/index.php?title=Collaboration
Email-list: eic-projdet-FarForw-l@lists.bnl.gov
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-I
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-I
```

