Precision phenomenology with multi-jet final states at the LHC

Rene Poncelet

LEVERHULME
TRUST

疁图 UNIVERSITY OF CAMBRIDGE

Precision era of the LHC

Precision era of the LHC

Standard Model of Elementary Particles

- Collider data constrains the various interactions in the Standard Model.
- At the LHC QCD is part of any process!

1) The limiting factor in many analyses is QCD and associated uncertainties.
\rightarrow Radiative corrections indispensable
2) How well we do know QCD? Coupling constant, running, PDFs, ...

- The production of high energy jets allow to probe pQCD at high energies directly
$\mathcal{L}_{\mathrm{QCD}}=\bar{q}_{i}\left(\gamma^{\mu} \mathcal{D}_{\mu}-m_{i}\right) q_{i}-\frac{1}{4} F_{a}^{\mu \nu} F_{\mu \nu}^{a}$

1) Testing the predicted dynamics
2) Extract the coupling constant

Multi-jet observables

Uncertainties in theory large compared to experiment

- NNLO QCD needed for precise theory-data comparisons
\rightarrow Restricted precision QCD studies to two-jet data
- New NNLO QCD three-jet computations give access to many more observables:

- Jet ratios, for example R32:

Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC Czakon, Mitov, Poncelet [2106.05331]

$$
R^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)=\frac{\mathrm{d} \sigma_{3}^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)}{\mathrm{d} \sigma_{2}^{i}\left(\mu_{R}, \mu_{F}, \mathrm{PDF}, \alpha_{S, 0}\right)}
$$

- Event shapes (based on particles or jets)

NNLO QCD corrections to event shapes at the LHC
Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet 2301.01086

NNLO QCD prediction beyond $2 \rightarrow 2$

$2 \rightarrow 3$ Two-loop amplitudes

- (Non-) planar 5 point massless [Chawdry'19'20'21,Abreu'20'21,Agarwal'21,Badger'21] \rightarrow triggered by efficient MI representation [Chicherin'20]
- For three-jets \rightarrow [Abreu'20'21] (checked against NJET [Badger'12'21])
- 5 point with one external mass [Abreu'20,Syrrakos'20,Canko'20,Badger'21'22,Chicherin'22]

One-loop amplitudes \rightarrow OpenLoops [Buccioni'19]

- Many legs and IR stable (soft and collinear limits)

Double-real Born amplitudes \rightarrow AvHlib[Bury'15]

- IR finite cross-sections \rightarrow NNLO subtraction schemes
qT-slicing [Catani'07], N-jettiness slicing [Gaunt'15/Boughezal'15], Antenna [Gehrmann'05-'08], Colorful [DelDuca'05-'15], Projetction [Cacciari'15], Geometric [Herzog'18], Unsubtraction [Aguilera-Verdugo'19], Nested collinear [Caola'17],
Local Analytic [Magnea'18], Sector-improved residue subtraction [Czakon'10-'14,'19]

Encoding QCD dynamics in event shapes

Using (global) event information to separate different regimes of QCD event evolution:

- Thrust \& Thrust-Minor

$$
T_{\perp}=\frac{\sum_{i}\left|\vec{p}_{T, i} \cdot \hat{n}_{\perp}\right|}{\sum_{i}\left|\vec{p}_{T, i}\right|}, \quad \text { and } \quad T_{m}=\frac{\sum_{i}\left|\vec{p}_{T, i} \times \hat{n}_{\perp}\right|}{\sum_{i}\left|\vec{p}_{T, i}\right|}
$$

- (Transverse) Linearised Sphericity Tensor

$$
\mathcal{M}_{x y z}=\frac{1}{\sum_{i}\left|\vec{p}_{i}\right|} \sum_{i} \frac{1}{\left|\overrightarrow{p_{i}}\right|}\left(\begin{array}{ccc}
p_{x, i}^{2} & p_{x, i} p_{y, i} & p_{x, i} p_{z, i} \\
p_{y, i} p_{x, i} & p_{y, i}^{2} & p_{y, i} p_{z, i} \\
p_{z, i} p_{x, i} & p_{z, i} p_{y, i} & p_{z, i}^{2}
\end{array}\right)
$$

- Energy-energy correlators
- N-Jettiness
- Generalised event shapes \rightarrow Earth-Mover Distance Here: use jets as input \rightarrow experimentally advantageous (better calibrated, smaller non-pert.)

Transverse Thrust @ NNLO QCD

NNLO QCD corrections to event shapes at the LHC
Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet 2301.01086
ATLAS [2007.12600]

The transverse energy-energy correlator

$$
\frac{1}{\sigma_{2}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \Delta \phi}=\frac{1}{\sigma_{2}} \sum_{i j} \int \frac{\mathrm{~d} \sigma x_{\perp, i} x_{\perp, j}}{\mathrm{~d} x_{\perp, i} \mathrm{~d} x_{\perp, j} \mathrm{~d} \cos \Delta \phi_{i j}} \delta\left(\cos \Delta \phi-\cos \Delta \phi_{i j}\right) \mathrm{d} x_{\perp, i} \mathrm{~d} x_{\perp, j} \mathrm{~d} \cos \Delta \phi_{i j}
$$

- Insensitive to soft radiation through energy weighting
- Event topology separation:

ATLAS

- Central plateau contain isotropic events
- To the right: self-correlations, collinear and in-plane splitting
- To the left: back-to-back

$\mu_{\mathrm{R}, \mathrm{F}}=\mathrm{F}_{\mathrm{T}}$
$\alpha_{s}\left(m_{z}\right)=0.1180$
NNPDF 3.0 (NNLO)
\rightarrow Data
--- LO
.-. NLO
- NNLO

[ATLAS 2301.09351]

Double differential TEEC

ATLAS

Particle-level TEEC
$\sqrt{\mathrm{s}}=13 \mathrm{TeV} ; 139 \mathrm{fb}^{-1}$
anti- $\mathrm{k}_{\mathrm{t}} \mathrm{R}=0.4$
$\mathrm{p}_{\mathrm{T}}>60 \mathrm{GeV}$
$|\eta|<2.4$
$\mu_{\mathrm{R}, \mathrm{F}}=\mathrm{A}_{\mathrm{T}}$
$\alpha_{s}\left(m_{z}\right)=0.1180$
NNPDF 3.0 (NNLO)
\rightarrow Data
--- LO
..- NLO

- NNLO

Systematic Uncertainties TEEC

Experimental uncertainties

Theory uncertainties

Scale dependence is the dominating uncertainty \rightarrow NNLO QCD required to match exp.

Strong coupling dependence

TEEC

$R^{\mathrm{NNLO}, \mathrm{fit}}\left(\mu, \alpha_{S, 0}\right)=c_{0}+c_{1}\left(\alpha_{S, 0}-0.118\right)+c_{2}\left(\alpha_{S, 0}-0.118\right)^{2}+$
Visualisation of α_{S} depamefelaclinear dependence

$$
\tilde{c}_{1}=\frac{c_{1}}{R^{\mathrm{NNLO}}\left(\alpha_{S, 0}=0.118\right)}
$$

For comparison:
scale dependence (dominant theory uncertainty)

- TEEC ($\left.H_{T, 2}>1 \mathrm{TeV}\right): \sim 2 \%<O(1 \%)$
- Thrust: ~3-5 \% $\}$ sensitivity

α_{S} from TEEC @ NNLO by ATLAS

[ATLAS 2301.09351]

- NNLO QCD extraction from multi-jets \rightarrow will contribute to the PDG average for the first time.
- Significant improvement to 8 TeV result mainly driven by NNLO QCD corrections
- Individual precision comparable to other measurements which include DIS and top or jets-data.

Running of α_{S}

Using the running of α_{S} to probe NP

[Llorente, Nachman 1807.00894]

Indirect constraints to NP through modified running:

$$
\beta_{0}=\frac{1}{4 \pi}\left(11-\frac{2}{3} n_{f}-\frac{4}{3} n_{X} T_{X}\right)
$$

$$
\alpha_{s}(Q)=\frac{1}{\beta_{0} \log z}\left[1-\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log (\log z)}{\log z}\right] ; \quad z=\frac{Q^{2}}{\Lambda_{\mathrm{QCD}}^{2}}
$$

$$
\beta_{1}=\frac{1}{(4 \pi)^{2}}\left[102-\frac{38}{3} n_{f}-20 n_{X} T_{X}\left(1+\frac{C_{X}}{5}\right)\right]
$$

Update with TEEC@13 TeV
\rightarrow much improved bounds

or 'new' SM dynamics

Systematic slope
\rightarrow New physics?

Possible SM explanations

- Residual PDF effects \rightarrow very high Q^{2} ?
- EW corrections?
- Maybe effect from LC approximation in two-loop ME?

$$
\begin{aligned}
\mathcal{R}^{(2)}\left(\mu_{R}^{2}\right)= & 2 \operatorname{Re}\left[\mathcal{M}^{\dagger(0)} \mathcal{F}^{(2)}\right]\left(\mu_{R}^{2}\right)+\left|\mathcal{F}^{(1)}\right|^{2}\left(\mu_{R}^{2}\right) \\
\equiv & \mathcal{R}^{(2)}\left(s_{12}\right)+\sum_{i=1}^{4} c_{i} \ln ^{i}\left(\frac{\mu_{R}^{2}}{s_{12}}\right) \\
& \mathcal{R}^{(2)}\left(s_{12}\right) \approx \mathcal{R}^{(2) l . c . c}\left(s_{12}\right)
\end{aligned}
$$

- Experimental systematics?
- Resummation?

Either case interesting!

Summary \& Outlook

Summary

- Three jet NNLO QCD predictions allow for precision phenomenology with multi-jet final states
- First predictions for R32 ratios and event shapes
- Extraction of the strong coupling constant from event shapes by ATLAS \rightarrow will contribute to PDG ave.
- Relatively costly enterprise
\rightarrow effective NNLO QCD cross section tools needed
\rightarrow optimized STRIPPER subtraction scheme

Outlook

- Many more observables are accessible: azimuthal decorrelation, earth-mover distance, ...
- Still improvements to be made on subtractions schemes:
- Better MC integration techniques \rightarrow ML community has developed a plethora of tools
- Technical aspects like form of selector function and phase space mappings " 3 factors of 2 are also a order of magnitude" \rightarrow difference between "doable" and "not doable"!

Backup

Hadronic cross section

The NNLO bit: $\quad \hat{\sigma}_{a b}^{(2)}=\hat{\sigma}_{a b}^{\mathrm{RR}}+\hat{\sigma}_{a b}^{\mathrm{RV}}+\hat{\sigma}_{a b}^{\mathrm{VV}}+\hat{\sigma}_{a b}^{\mathrm{C} 2}+\hat{\sigma}_{a b}^{\mathrm{C} 1}$

Double real radiation
$\hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2}\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2}$

Real/Virtual correction
Double virtual corrections
$\hat{\sigma}_{a b}^{\mathrm{RV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(1)}\right\rangle \mathrm{F}_{n+1}$

$$
\hat{\sigma}_{a b}^{\mathrm{VV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n}\left(2 \operatorname{Re}\left\langle\mathcal{M}_{n}^{(0)} \mid \mathcal{M}_{n}^{(2)}\right\rangle+\left\langle\mathcal{M}_{n}^{(1)} \mid \mathcal{M}_{n}^{(1)}\right\rangle\right) \mathrm{F}_{n}
$$

Partonic cross section beyond LO

Perturbative expansion of partonic cross section:

$$
\hat{\sigma}_{a b \rightarrow X}=\hat{\sigma}_{a b \rightarrow X}^{(0)}+\hat{\sigma}_{a b \rightarrow X}^{(1)}+\hat{\sigma}_{a b \rightarrow X}^{(2)}+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

Contributions with different multiplicities and \# convolutions:

$$
\hat{\sigma}_{a b}^{(2)}=\frac{\hat{\sigma}_{a b}^{\mathrm{RR}}+\hat{\sigma}_{a b}^{\mathrm{RV}}+\hat{\sigma}_{a b}^{\mathrm{VV}}+\hat{\sigma}_{a b}^{\mathrm{C} 2}+\hat{\sigma}_{a b}^{\mathrm{C} 1}}{\downarrow}
$$

$$
\begin{aligned}
& \hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2}\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2} \\
& \hat{\sigma}_{a b}^{\mathrm{RV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(1)}\right\rangle \mathrm{F}_{n+1}
\end{aligned}
$$

Each term separately IR divergent. But sum is:
\rightarrow finite

$$
\hat{\sigma}_{a b}^{\mathrm{VV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n}\left(2 \operatorname{Re}\left\langle\mathcal{M}_{n}^{(0)} \mid \mathcal{M}_{n}^{(2)}\right\rangle+\left\langle\mathcal{M}_{n}^{(1)} \mid \mathcal{M}_{n}^{(1)}\right\rangle\right) \mathrm{F}_{n}
$$

\rightarrow regularization scheme independent

$$
\hat{\sigma}_{a b}^{\mathrm{C} 1}=(\text { single convolution }) \mathrm{F}_{n+1}
$$

Considering CDR $(d=4-2 \epsilon)$:
\rightarrow Laurent expansion: $\hat{\sigma}_{a b}^{G}=\sum_{i=-4}^{0} c_{i} \epsilon^{i}+\mathcal{O}(\epsilon)$
$\hat{\sigma}_{a b}^{\mathrm{C} 2}=($ double convolution $) \mathrm{F}_{n}$

Sector decomposition I

Considering working in CDR:
\rightarrow Virtuals are usually done in this regularization
\rightarrow Real radiation:
\rightarrow Very difficult integrals, analytical impractical (except very simple cases)!
\rightarrow Numerics not possible, integrals are divergent: ε-poles!
How to extract these poles? \rightarrow Sector decomposition!

Divide and conquer the phase space:
$1=\sum_{i, j}\left[\sum_{k} \mathcal{S}_{i j, k}+\sum_{k, l} \mathcal{S}_{i, k ; j, l}\right]$
$\hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2} \sum_{i, j}\left[\sum_{k} \mathcal{S}_{i j, k}+\sum_{k, l} \mathcal{S}_{i, k ; j, l}\right]\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2}$

Sector decomposition II

Divide and conquer the phase space:
\rightarrow Each $\mathcal{S}_{i j, k} / \mathcal{S}_{i, k ; j, l}$ has simpler divergences. appearing as $1 / s_{i j k} \quad 1 / s_{i k} / s_{j l}$
Soft and collinear (w.r.t parton k, l) of partons i and j
\rightarrow Parametrization w.r.t. reference parton:

$$
\hat{\eta}_{i}=\frac{1}{2}\left(1-\cos \theta_{i r}\right) \in[0,1] \quad \hat{\xi}_{i}=\frac{u_{i}^{0}}{u_{\max }^{0}} \in[0,1]
$$

\rightarrow Subdivide to factorize divergences

$$
s_{u_{1} u_{2} k}=\left(p_{k}+u_{1}+u_{2}\right)^{2} \sim \hat{\eta}_{1} u_{1}^{0}+\hat{\eta}_{2} u_{2}^{0}+\hat{\eta}_{3} u_{1}^{0} u_{2}^{0}
$$

\rightarrow double soft factorization:

$$
\theta\left(u_{1}^{0}-u_{2}^{0}\right)+\theta\left(u_{2}^{0}-u_{1}^{0}\right)
$$

\rightarrow triple collinear factorization

[Czakon'10,Caola'17]

Sector decomposition III

Factorized singular limits in each sector:

Regularization of divergences:

$$
x^{-1-b \epsilon}=\underbrace{\frac{-1}{b \epsilon}}_{\text {pole term }}+\underbrace{\left[x^{-1-b \epsilon}\right]}_{\text {reg. }+ \text { sub. }}
$$

$$
\int_{0}^{1} \mathrm{~d} x\left[x^{-1-b \epsilon}\right]_{+} f(x)=\int_{0}^{1} \frac{f(x)-f(0)}{x^{1+b \epsilon}}
$$

Finite NNLO cross section

$$
\begin{aligned}
& \hat{\sigma}_{a b}^{\mathrm{RR}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+2}\left\langle\mathcal{M}_{n+2}^{(0)} \mid \mathcal{M}_{n+2}^{(0)}\right\rangle \mathrm{F}_{n+2} \\
& \hat{\sigma}_{a b}^{\mathrm{RV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{n+1}^{(0)} \mid \mathcal{M}_{n+1}^{(1)}\right\rangle \mathrm{F}_{n+1} \\
& \hat{\sigma}_{a b}^{\mathrm{VV}}=\frac{1}{2 \hat{s}} \int \mathrm{~d} \Phi_{n}\left(2 \operatorname{Re}\left\langle\mathcal{M}_{n}^{(0)} \mid \mathcal{M}_{n}^{(2)}\right\rangle+\left\langle\mathcal{M}_{n}^{(1)} \mid \mathcal{M}_{n}^{(1)}\right\rangle\right) \mathrm{F}_{n} \\
& \hat{\sigma}_{a b}^{\mathrm{C} 1}=(\text { single convolution }) \mathrm{F}_{n+1} \\
& \hat{\sigma}_{a b}^{\mathrm{C} 2}=(\text { double convolution }) \mathrm{F}_{n} \\
& \left(\sigma_{F}^{R R}, \sigma_{S U}^{R R}, \sigma_{D U}^{R R}\right) \quad\left(\sigma_{F}^{R V}, \sigma_{S U}^{R V}, \sigma_{D U}^{R V}\right) \quad\left(\sigma_{F}^{V V}, \sigma_{D U}^{V V}, \sigma_{F R}^{V V}\right) \quad\left(\sigma_{S U}^{C 1}, \sigma_{D U}^{C 1}\right) \quad\left(\sigma_{D U}^{C 2}, \sigma_{F R}^{C 2}\right) \\
& \text { re-arrangement of terms } \rightarrow \text { 4-dim. formulation [Czakon'14, Czakon'19] } \\
& \underline{\left(\sigma_{F}^{R R}\right)} \underline{\left(\sigma_{F}^{R V}\right)} \underline{\left(\sigma_{F}^{V V}\right)} \underline{\left(\sigma_{S U}^{R R}, \sigma_{S U}^{R V}, \sigma_{S U}^{C 1}\right)}\left(\sigma_{D U}^{R R}, \sigma_{D U}^{R V}, \sigma_{D U}^{V V}, \sigma_{D U}^{C 1}, \sigma_{D U}^{C 2}\right) \underline{\left(\sigma_{F R}^{R V}, \sigma_{F R}^{V V}, \sigma_{F R}^{C 2}\right)} \\
& \text { separately finite: } \varepsilon \text { poles cancel }
\end{aligned}
$$

More event-shapes I

More event-shapes II

Event shapes as MC tuning tool

