Detection of Gravitational Waves with Machine Learning/Deep Learning Algorithms

Osvaldo Freitas

23 September 2022 University of Minho

1. An introduction to gravitational waves

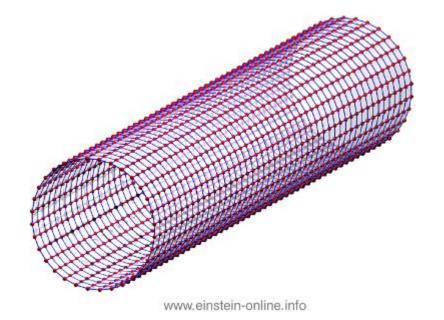
- 1. An introduction to gravitational waves
- 2. Gravitational wave detectors

- 1. An introduction to gravitational waves
- 2. Gravitational wave detectors
- 3. Challenges

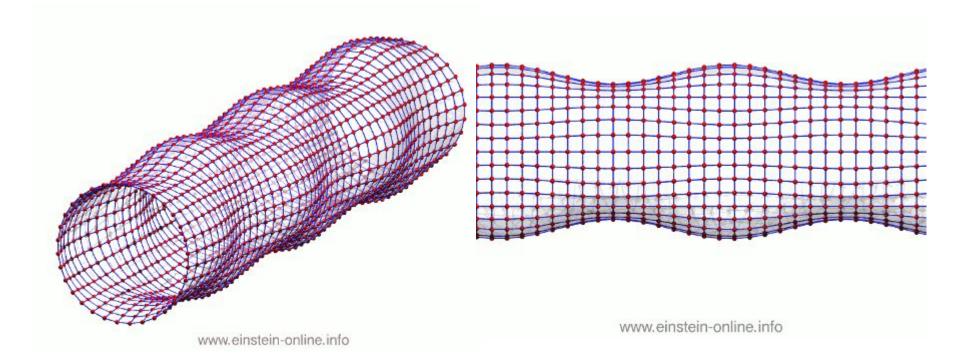
- 1. An introduction to gravitational waves
- 2. Gravitational wave detectors
- 3. Challenges
- 4. Machine learning

- 1. An introduction to gravitational waves
- 2. Gravitational wave detectors
- 3. Challenges
- 4. Deep learning
- 5. Applications to GW astronomy

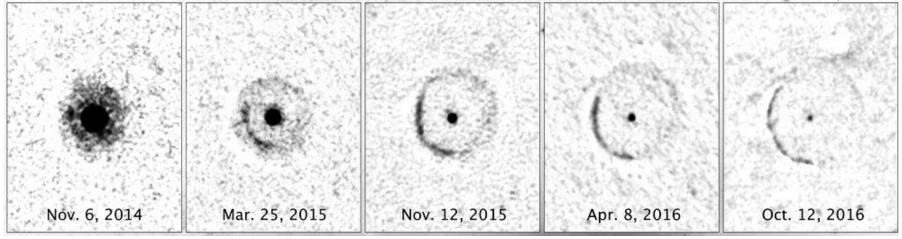
Gravitational waves



Gravitational waves

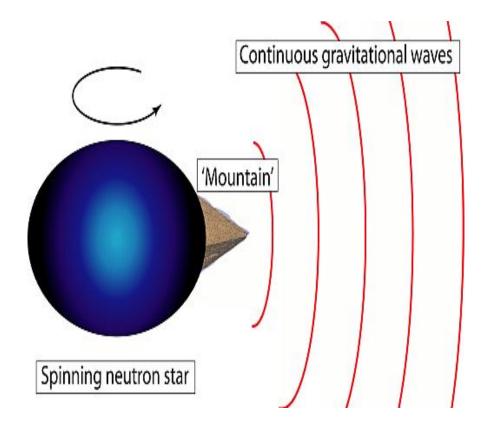


Sources of gravitational waves - Supernovae

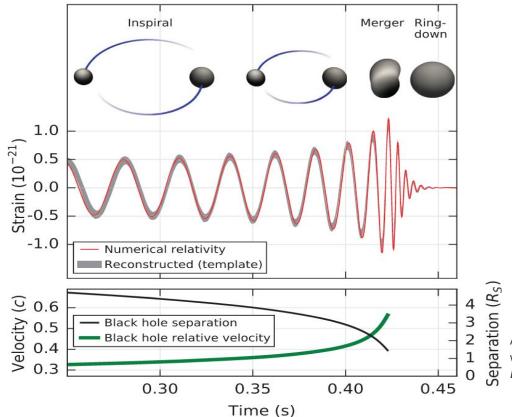


esahubble.org

Sources of gravitational waves - Spinning neutron stars



Sources of gravitational waves - Binary systems



Abbott BP. *et al.* 2016. Observation of gravitational waves from a binary black hole merger. *Phys. Rev. Lett.* 116, 061102 (10.1103/PhysRevLett.116.061102)

Gravitational wave detections

• 90 candidates found so far!

Gravitational wave detections

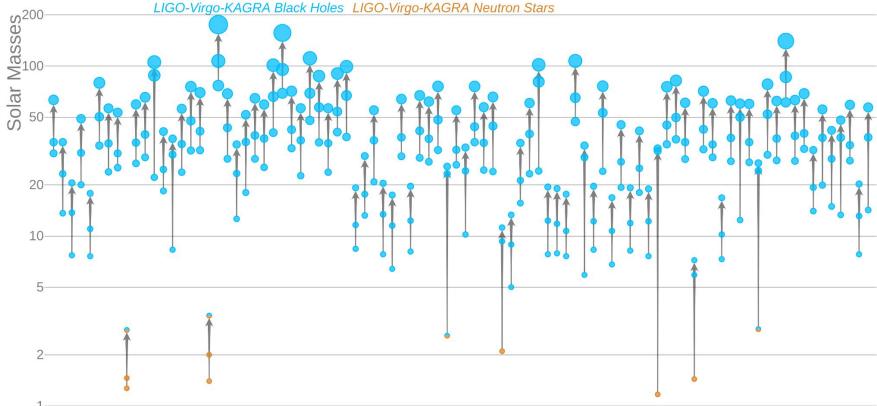
- 90 candidates found so far!
- Detectors will improve further

Gravitational wave detections

- 90 candidates found so far!
- Detectors will improve further
- Wholly new detectors are in the work

• Detection rate will increase significantly!

Masses in the Stellar Graveyard



LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Network	GW events		Joint GW-GRB events	
	Flat	Gaussian	Flat	Gaussian
HLVKI	768	814	14	15

Table 1. Number of GW events detected by second generation (2G) networks in 10 years, and the expected GW-GRB coincidences obtained by assuming a GRB detector with the characteristics of Fermi-GBM. We show detection rates for BNS populations generated using O2 rates corresponding to both flat and Gaussian mass distributions.

Network	GW events		Joint GW-GRB events	
	Flat	Gaussian	Flat	Gaussian
HLVKI	768	814	14	15

Table 1. Number of GW events detected by second generation (2G) networks in 10 years, and the expected GW-GRB coincidences obtained by assuming a GRB detector with the characteristics of Fermi-GBM. We show detection rates for BNS populations generated using O2 rates corresponding to both flat and Gaussian mass distributions.

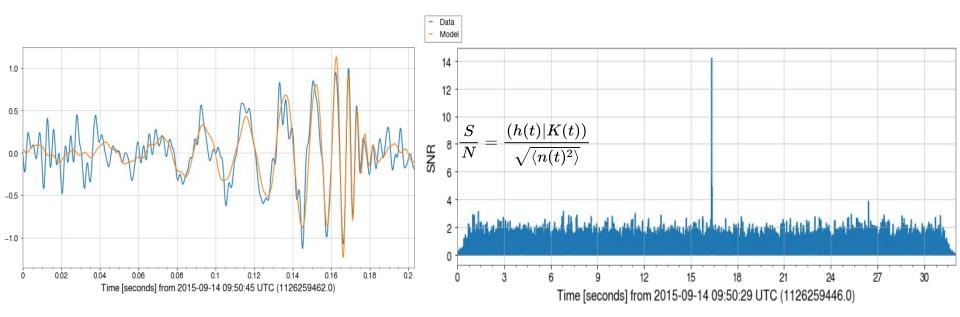
Network	GW e	events	Joint GW-GRB events		
	Flat	Gaussian	Flat	Gaussian	
ET	621,700	688,426	389 (128)	511 (169)	
ET+CE+CE	5,420,656	7,077,131	644 (213)	907 (299)	

Table 2. Number of GW BNS events detected by third generation (3G) networks in 10 years of data taking (assuming a 80% duty cycle for each detector) and the corresponding GW-GRB coincidences obtained by assuming a GRB detector with the characteristics of THESEUS-XGIS; numbers in parenthesis show the number of sources with arcmin localisation. BNS populations are generated using the O2 rates corresponding to 'flat' and 'Gaussian' mass distributions.

E. Belgacem, Y. Dirian, S. Foffa, E. J. Howell, M. Maggiore, and T. Regimbau, *Cosmology and Dark Energy from Joint Gravitational Wave-GRB Observations*, J. Cosmol. Astropart. Phys. **2019**, 015 (2019).

- Detection rate will increase significantly!
- Current methods use extensive template banks

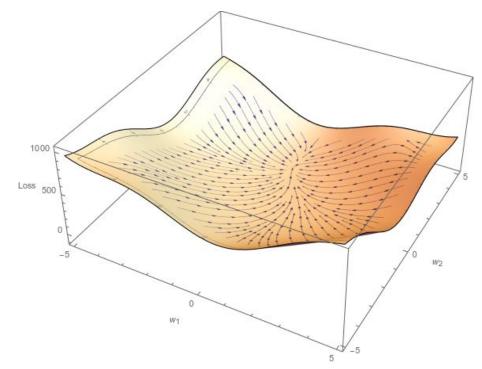
- Detection rate will increase significantly!
- Current methods use extensive template banks



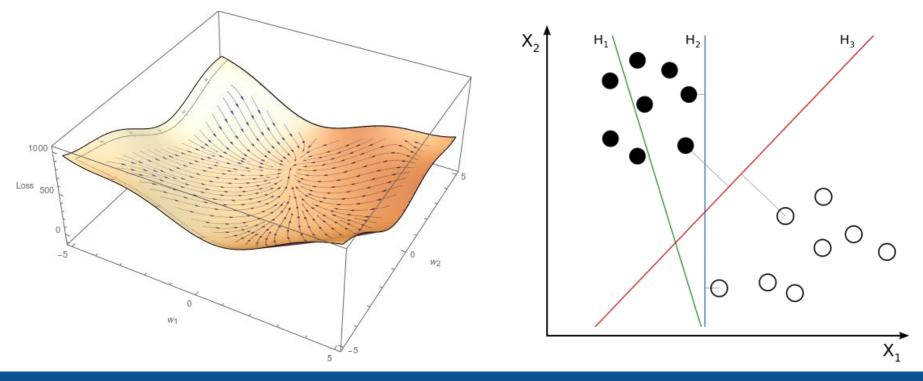
- Detection rate will increase significantly!
- Current methods use extensive template banks
- We must deal with large amounts of data efficiently
 - Unmodeled searches
 - Accelerated parameter estimation
 - Fast template generation

• Algorithms can be trained to extract meaningful information from data.

• Algorithms can be trained to extract meaningful information from data.



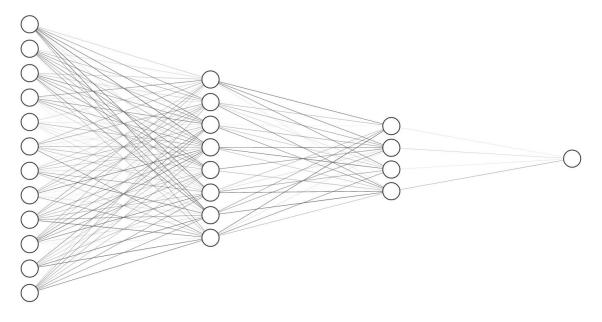
• Algorithms can be trained to extract meaningful information from data.

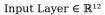


- Algorithms can be trained to extract meaningful information from data.
- Very efficient at runtime; computational cost concentrated in training process

Machine Learning

Deep Learning

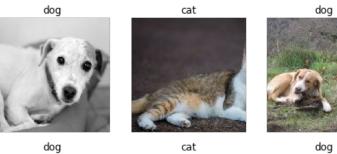




• Neural networks are **universal function approximators**

- Neural networks are **universal function approximators**
- Can be trained for any task (in principle)

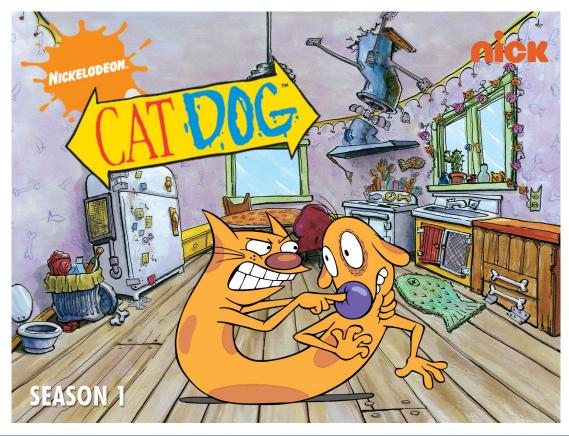
- Neural networks are **universal function approximators**
- Can be trained for any task (in principle)
- Can be bayesian in nature!



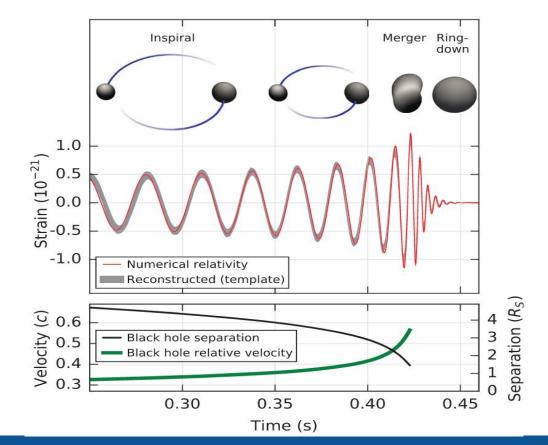
dog

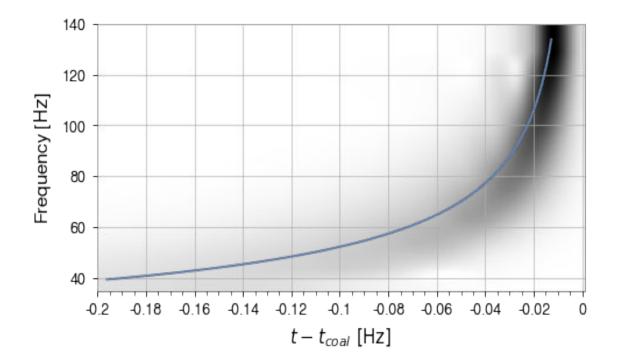
dog

dog

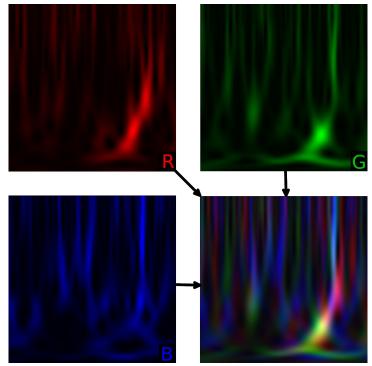


- Neural networks are **universal function approximators**
- Can be trained for any task (in principle)
- Can be bayesian in nature!

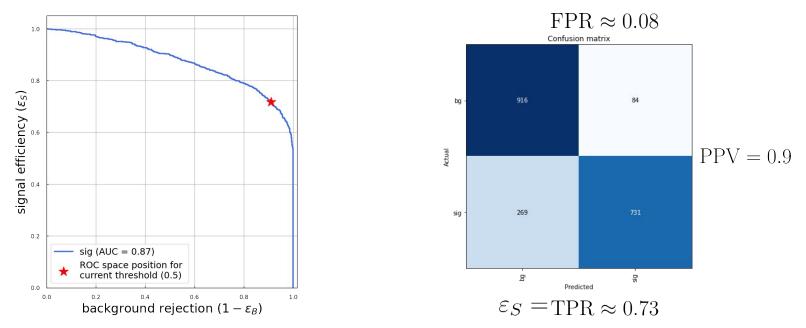




• We can reappropriate computer vision tools...

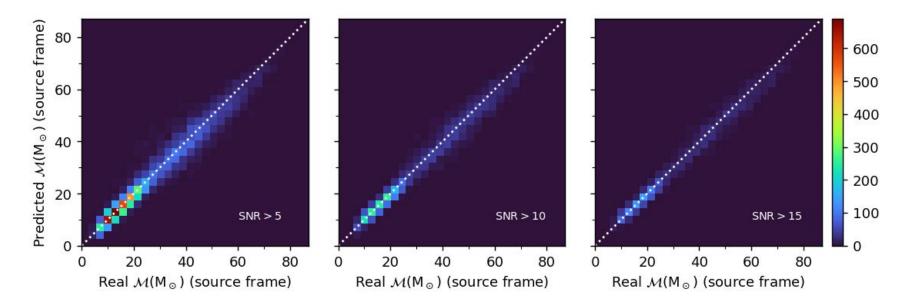


• We can reappropriate computer vision tools... for classification



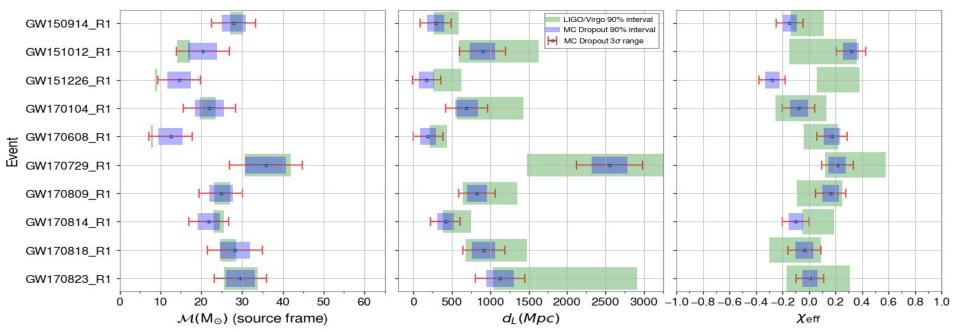
Álvares, J.D., Font, J.A., Freitas, F.F., Freitas, O.G., Morais, A.P., Nunes, S., Onofre, A., Torres-Forné, A., 2021. Exploring gravitational-wave detection and parameter inference using deep learning methods. Class. Quantum Grav. 38, 155010. <u>https://doi.org/10.1088/1361-6382/ac0455</u>

• We can reappropriate computer vision tools... for regression



Álvares, J.D., Font, J.A., Freitas, F.F., Freitas, O.G., Morais, A.P., Nunes, S., Onofre, A., Torres-Forné, A., 2021. Exploring gravitational-wave detection and parameter inference using deep learning methods. Class. Quantum Grav. 38, 155010. <u>https://doi.org/10.1088/1361-6382/ac0455</u>

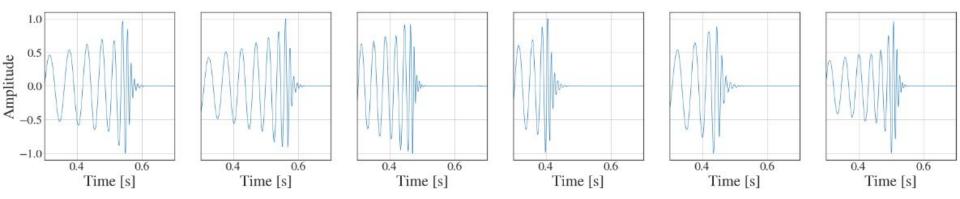
• We can reappropriate computer vision tools... for regression



Álvares, J.D., Font, J.A., Freitas, F.F., Freitas, O.G., Morais, A.P., Nunes, S., Onofre, A., Torres-Forné, A., 2021. Exploring gravitational-wave detection and

parameter inference using deep learning methods. Class. Quantum Grav. 38, 155010. https://doi.org/10.1088/1361-6382/ac0455

• Efforts ongoing to generate GW models with DL



McGinn, J., Messenger, C., Heng, I.S., Williams, M.J., 2021. Generalised gravitational burst generation with Generative Adversarial Networks. Class. Quantum Grav. 38, 155005. https://doi.org/10.1088/1361-6382/ac09cc

Summing up:

• GW astronomy is a growing field

Summing up:

- GW astronomy is a growing field
- Amount of relevant data will increase (absurdly)

Summing up:

- GW astronomy is a growing field
- Amount of relevant data will increase
- DL has already proved promising for the future of GW astronomy

Thank you!

help