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Rotational Core-Collapse Supernovae

Deep-Learning

Outline

Dataset
Results:

o Classification

o Regression




Gravitational collapse of the core of massive
stars and the subsequent explosion of such

stars as supernovae.

May provide valuable information about the
physical processes operating during the
gravitational collapse of the iron cores of

massive stars.




TimeSeries of CCSN
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Deep-Learning

For Classification and Regression:
Residual Convolutional Neural Networks (ResCNN)

Neurocomputing 367 (2019) 39-45
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Integration of residual network and convolutional neural network
along with various activation functions and global pooling for time
series classification
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ARTICLE INFO ABSTRACT
Am’c{e history: In this paper, we devise a hybrid scheme, which integrates residual network with convolutional neural
Received 27 May 2019 network, for time series classification. In the devised method, the architecture of network is constructed
Revised 21 July 2019 by facilitating a residual learning block at the first three convolutional layers to combine the strength
Accepted 8 August 2019 = g " ce i "

3 N of both methods. Further, different activation functions are used in different layers to achieve a decent
Available online 9 August 2019 : e A A i ST

abstraction. Additionally, to alleviate overfitting, the pooling operation is removed and the features are fed

Communicated by Steven Hoi into a global average pooling instead of a fully connected layer. The resulting scheme requires no heavy

preprocessing of raw data or feature crafting, thus could be easily deployed. To evaluate our method, we
test it on 44 benchmark datasets and compare its performance with related methods. The results show
that our method can deliver competitive performance among state-of-the-art methods.

© 2019 Elsevier B.V. All rights reserved.
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D ata S Ets e Selection of CCSN waveforms from the catalog

developed by Richers et al:
>  ,23.0rad/s
— tcoIIapse <1.0s

e Selection of parameter space.

Equation of State Effects on Gravitational Waves from Rotating Core Collapse
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(Dated: January 10, 2017) Of eaCh detector;

Gravitational waves (GWs) generated by axisymmetric rotating collapse, bounce, and early post-
bounce phases of a galactic core-collapse supernova will be detectable by current-generation gravi- Y Wh iten | n g
tational wave observatories. Since these GWs are emitted from the quadrupole-deformed nuclear- .
density core, they may encode information on the uncertain nuclear equation of state (EOS). We
examine the effects of the nuclear EOS on GWs from rotating core collapse and carry out 1824 ax-
isymmetric general-relativistic hydrodynamic simulations that cover a parameter space of 98 differ-
ent rotation profiles and 18 different EOS. We show that the bounce GW signal is largely independent
of the EOS and sensitive primarily to the ratio of rotational to gravitational energy, T'/|W|, and at
high rotation rates, to the degree of differential rotation. The GW frequency ( fpeax ~ 600—1000 Hz)
of postbounce core oscillations shows stronger EOS dependence that can be parameterized by the
core’s EOS-dependent dynamical frequency /Gp.. We find that the ratio of the peak frequency
to the dynamical frequency fpeak/v/Gpe follows a universal trend that is obeyed by all EOS and




Classification

GOAL: Distinguish strains with detector background noise from strains with

gravitational wave signals injected into the noise.

Dataset Properties:

e 50% background noise and 50% signal;

e Distance between 5 and 20 kPc;

e Random sky position and polarization angle;
e Fixed inclination (11/2 rad);

e All signals with SNR > 5;



Training configurations:

e 80% training set and 20% validation set
e Training function: fit_one_cycle

e Maximum Learning Rate: 0.003

e Weight decay: 0.001

e Model: ResCNN(3,2)



Classification Results:
Dataset of 10k




Classificatior

Dataset 0

Results

10k

For the training with 25 epochs:
Valid Loss: 0.1010
Accuracy: 97.5%




Confusion matrix ROC curve
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fication Results: Dataset of 10k (25 epoch)

Fig. - Distribution of Distance, Dh and Peak Frequency as a function of the SNR for the wrongly
classified real signals. The colors represents the score given by the model.
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Classification Results:
Dataset of 100k




Confusion matrix

noise

Actual

signal -

noise -
signal

Predicted
e No actual noise classified as signal with score
threshold of 0.5;
e Only 379 of actual signals was predicted as
noise (3.79%);
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AUC: 0.991
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Classification Results: Dataset of 100k
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Distribution of Distance, Dh and Peak Frequency as a function of the SNR for the wrongly classified real
signals. The colors represents the score given by the model.




Regression Results:
Dataset of 10k




Regression

GOAL: Parameter Inference

Dataset Properties:

10k TimeSeries;

Distance between 5 and 20 kPc;
Random sky position;

Fixed inclination (11/2 rad);

All signals with SNR > 5;

Inference:
> Frequency at the peak of the signal, f
> Amplitude of the signal, Ah

peak
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Training conditions:

70% training set and 30% validation set
Training function: fit_one_cycle
Maximum Learning Rate: 0.002

Weight decay: 0.001

Model: ResCNN(3,2)
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2 2D histogram of predicted values
10 vs real values for:
(a) Ah with SNR 2 5
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. (b) Ah with SNR = 15
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(d) peak frequency with SNR = 15
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Regression Results:
Dataset of 100k




Predicted Ah

Predicted Peakfrequency(Hz)
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2D histogram of predicted values vs
real values:

(a) Ah with SNR =5

(b) Ah with SNR = 15

(c) peak frequency with SNR = 5
(d) peak frequency with SNR = 15

Valid loss: 0.2297
Mean absolute error: 0.3347
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2D histograms of predicted Ah
vs real Ah for values of:

(@) SNR =5
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Predicted Peakfrequency(Hz)

Predicted Peakfrequency(Hz)
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Conclusions

This networks can perform
classification with high
accuracies

No false positives

False negatives appear only for

lower values of SNR

Regression performance is
related to the SNR, giving the
best results for SNR above 20




Attachments




Regression Results: Dataset of 100k for SNR > 20

Valid loss: 0.09229

Mean absolute error: 0.2170

x10-Histogram of Ah: u=3.313, 0=53.287 Histogram of Peak Frequency: u=0.039, 0=15.760
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