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Introduction

e Measuring GWs requires very sensitive Before the O1 run, glitches
. were observed at 60 Hz in
dgtectors. LIGO detegto.rs are equp.ed LIGO-Hanford, and their rate
W|th SyStemS tO minimize Several noise increased as the temperature
sources. got colder.
The problem was solved when =
) . a refrigerator whose bursts of ‘ S
* Nevertheless, there are still noise power coupled into the T\ Aoy rermcmron
transients, aka glitches, many with an electronics of the '

- _ e osed.
unknown origin. In the last observing run, nerierometerwas unplugee

they happened at a rate of O(1) min™

i i GW170817 - Livingston strain —V———+
e Glitches can raise false alarms or overlap There is 2 loud glith on top of the GW signal.

with GW signals, reducing the effectiveness
of the detections.
e Therefore, it is important to study the
different glitches, in order to identify their
causes and fix the problem.
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Dataset
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e Almost all classes are glitches (noise
t ra n S i e ntS)’ b ut t h e re is a ISO a N O G I itc h C I a SS 1-61.0 »0.511“01.8015) 05 1.0 -0.25»0.12;2.:(5)0.125 025 0.5 -02511"4:.&0(5)0.25 0.5 1.0 0511;&2(5) 05 1.0 0.5 -o.zsﬁra.eo(s)o.% 0.5 -
and a Chirp class, which is made of hardware
i nj e Ct i O n S . No. Class Total samples No. Class Total samples
. . o . 0 1080 Lines 328 11 No Glitch 181
e Gravity Spy is an imbalanced dataset, which 1 1400 Ripples 232 i#  Demsutidbors 88
. 2 Air Compressor 58 13 Paired Doves 27
can be problematic for DL models. 3 Blip 1869 14 Pover Line 153
4 Chirp 66 15  Repeating Blips 285
5 Extremely Loud 454 16  Scattered Light 459
6 Helix 279 17 Scratchy 354
7 Koi Fish 830 18  Tomte 116
8 Light Modulation 573 19 Violin Mode 472
[1] S. Bahaadini et al., “Machine learning for Gravity Spy: Glitch classification and dataset,” Information Sciences, vol. 9 Low_Frequency Burst 657 20  Wandering Line 14
444, pp. 172-186, 2018. doi: 10.1016/j.ins.2018.02.068. 10 Low Frequency Lines 453 21 Whistle 305

[2] S. Bahaadini et al., “Machine learning for Gravity Spy: Glitch classification and dataset,” Oct. 2018.
url: https://zenodo.org/record/1476156




Baseline model

e Different views tried:

. . singlel single2 single3 single4
o single views 1 to 4; oo
o merged view [3]; < l l
o encoded views [4] (every 5 l
. . . £ 32
combination of at least 2 single 16
. -0.25 -0.125 0.0 0.125 0.25 -0.5 -0.25 0.0 0.25 05 - -0.5 0. -1.0 1.
Vl eWS) . 140 x 170 px, BW Time(s) Time(s) me(s) Tlme(s)
e Baseline models, trained from scratch: green channel
blue channel
o ResNet18 and ResNet34 [5]
encodedl34
layer name | output size 18-layer ‘ 34-layer
convl 112x112 7x7, 64, stride 2
33 max pool, stride 2
conv2_x 56x56 3%x3, 64 3x3, 64
[ 3x3, 64 } 2 [ 3x3, 64 }”
covdx | 28x28 || ;ig :;g 2 | g:; 32 15
conv4_x 14x 14 [ gig ;22 - X2 [ gig ;gg - x6
_ - - - 140 x 170 px, RGB
comsx | 7x1 || 332 | [ AT, i
= w 280 x 340 px, BW

1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6x10°

[3] S. Bahaadini et al., “Deep multi-view models for glitch classification,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp.
2931-2935. doi: 10.1109/ICASSP.2017.7952693.

[4] D. George, H. Shen, and E. Huerta, “Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO,” 2017. arXiv preprint: 1706.07446.

[5] K. He et al., “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem,
pp. 770-778, 2016. doi: 10.1109/CVPR.2016.90.




Baseline model

e Metrics:
o (Macro-averaged) F1 score
o combined f1 _time (avoid models which are too
slow to train)

combined_f1_time = f1_score — total _runtime/30000

e Chosen view — encoded134:

o similar F1 score as the merged view in less time
(encoding information in the channel dimension is
more efficient than increasing image size);

o F1 score higher than encoded1234 (could be due
to training randomness);

o 3-channel structure is useful for transfer learning.

e Chosen architecture — ResNet18:
O better F1 scores with less training time.
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Baseline model

Baseline configuration:

©)
©)
©)
©)
©)

ResNet18 architecture
encoded134 view

15 epochs

bs 64

steep Ir function

The baseline configuration was

used to train five

independent

models.
Evaluation on the best one on the
validation dataset:

O

O

97.4% F1 score — 98.1% after
label correction;

Precision and recall 2 95% for
18 out of 22 classes;

s of the errors involved the
minority classes.

Can results be improved if class
imbalance is addressed?
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Addressing class imbalance

e First approach — increase the importance of the et ey
less common g{lasses. ’ o e (b-0900)
° e ® effective (8=0.9999)
A 5 ] ® inverse
£(0) = > (w)yrlog(pr) .
k=1 . . s 1094 * o oo : : e o @ee ® o0 o
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o Effective number of samples [6]: o | .2 3
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e Second approach — use the focal loss function [7], al ——1=5
which decreases the importance of samples were g
the model is very confident. & welilaediied
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i
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[6] Y. Cui et al., “Class-balanced loss based on effective number of samples,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2019-June, pp. 9260-9269, 2019. doi: 10.1109/CVPR.2019.00949

[7] T. Lin et al., “Focal Loss for Dense Object Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2,
pp. 318-327, 2020. doi: 10.1109/TPAMI.2018.2858826




Addressing class imbalance

0.99
------ baseline maximum

—==- baseline median

e First approach — increase the importance of the
less common classes.

o©

©

N
)

o The ResNetl8 models’ performance does not
increase, but = ose1
o ResNet34’s performance improves!
= E:teéme Note: baseline and best6 use the Resnet18
B resnet34  grchitecture.
0o nolne invérse effeétive
weighting_strategy
e Second approach — use the focal loss function [7], ‘
which decreases the importance of samples were ﬁ v *

the model is very confident.
o Focal loss does not improve the performance.

fl_score
o
o
w

o It combines very badly with the inverse o
WEighting Strategy. 2 Weimmf?‘;:terategy Note: all models use the !
0.1 = ;nf‘f'jcr;ie baseline configuration.

loss function




Transfer learning model

e Using pre-trained models can vyield e
better performance and allow for faster
training. oo

e Tested architectures: 2
o Resnetl8, 26, 34 and 50 [5] "L
o ConvNeXt Nano and Tiny [8]

e ConvNeXt Nano outperforms the others. G

architecture

e A bayesian sweep was performed to find
good sets of hyperparameters for the
fine-tuning of ConvNeXt Nano.

e Two of the found configurations appear
to perform better than the baseline.

e The best run of tl_best5, with a 98.21% c
validation F1 score, was chosen as the B il e
best model. C4 .

[5] K. He et al., “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society ]

baseline tl_bests tl_fastl

Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 770-778, 2016. doi: - .
configuration

10.1109/CVPR.2016.90.
[8] Z. Liu et al., “A ConvNet for the 2020s,” 2022. arXiv preprint: 2201.03545.



Model evaluation on the test set

The baseline and tl best5 models were
evaluated in the test dataset.

The baseline model achieved higher
performance, despite being worse than
tl_best5 in the validation set. This could be
due to having overfitted the validation set.

The baseline model achieves precision and
recall of at least 95% for 19 of the 22
classes.

Results better than all previous articles
other than George2017 [4].

The chirp class has perfect F1 score, which
motivates the next step: find if the model
can correctly classify real GW signals, with
no further training.
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[ME=leyfe]a) 1-00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.96 1.00 0.99 0.96 0.82 0.80 0.99 0.98 1.00 0.98 0.95 1.00 1.00 0.98

Predicted Class

Model

F1 score (%)

accuracy (%) Notes

merged view CNN [3]
merged view CNN [1]
hard fusion ensemble [1]
fine-tuned ResNet50 [4]
tl-best5 [this work]
baseline [this work]

not reported
not reported
not reported
97.65
96.84
97.18

96.89 different dataset version (20 classes)

97.67 improved version of [3]

98.21 combines four CNNs

98.84  different split (no validation set)
98.14 fine-tuned ConvNeXt_Nano
98.68 ResNetl8 trained from scratch

[1] S. Bahaadini et al., “Machine learning for Gravity Spy: Glitch classification and dataset,” Information Sciences, vol. 444, pp. 172-186, 2018. doi: 10.1016/j.ins.2018.02.068.

[3] S. Bahaadini et al., “Deep multi-view models for glitch classification,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp.
2931-2935. doi: 10.1109/ICASSP.2017.7952693.

[4] D. George, H. Shen, and E. Huerta, “Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO,” 2017. arXiv preprint: 1706.07446.




Testing the models with real GW signals

Gravity Spy Real_GWs_v1 Real_GWs_v2 Real_GWs_v5 Real_GWs_v6
e The LIGO (H1 and L1) strain data from the

11 O1 and 02 confident detections were

converted to a format similar to the

dataset.
e 12 examples where the chirp behaviour baseline model predictions

was observable were manually selected. e T e et M e e R e gD

e The predictions of the baseline model were
heavily influenced by the sample creation
pipeline. oyzoszs. owzoms o
e For the most similar  dataset,
Real GWs_v6:
o 3 events were correctly identified as
Chirp — 25% recall;
o 4 were labelled as None of the Above N O T S

(mainly due to different morphology); -- - -

GW170823 - L1
label: Chirp

pred: Scratchy

o 5 identified as Scratchy (low energy
GW signal).




Testing the model with real GW signals

Gravity Spy Real_GWs_v1 Real_GWs_v2 Real_GWs_v5 Real_GWSs_v6

I
e The best model trained with transfer -

learning was also tested on the real GWs. tl_best5 model predictions

GW170608 — L1 GW170817 — H1 GW170823 — H1 GW170608 — H1
label: Chirp label: Chirp
pred: Blip pred: Power_Line

label: Chirp
pred: No_Glitch

label: Chirp
pred: Wandering_Line

e For Real GWs_v6 8 events were correctly
identified as Chirp — 75% recall!

e For the other dataset versions, the recall — cw170108 -2 S ewirosz3- 11
’ label: Chirp label: Chirp label: Chirp label: Chirp
pred: Chirp pred: Chirp pred: Chirp pred: Chirp

was at least equal. The TL model was much
more robust, even when the channels
were shifted.

GW150914 - L1 GW170809 - L1 GW170814 - L1 GW150914 - H1
label: Chirp label: Chirp label: Chirp label: Chirp
pred: Chirp pred: Chirp pred: Chirp pred: Chirp
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Conclusion

e Deep Learning is a good approach for the classification of glitches,
particularly when converted to spectrograms.

e Encoded views are an effective way of presenting information to the models.

e Small models appear to be enough to separate the different glitch classes.

e Models trained with less than 50 chirp examples were capable of detecting
real GWs.

e Bigger datasets, including O3 data, are needed".
e Synthetic data generation could help populate the less represented classes.

You can help by participating in the citizen science project at https://www.zooniverse.org/projects/zooniverse/gravity-spy


https://www.zooniverse.org/projects/zooniverse/gravity-spy




