Deep Learning for the Classification of Signals and Transient Noises in the LIGO Detectors

Tiago Fernandes

Department of Physics University of Aveiro, Portugal



Introduction

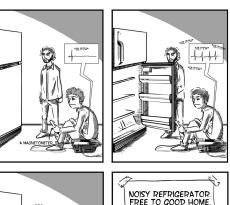
- Measuring GWs requires very sensitive detectors. LIGO detectors are equipped with systems to minimize several noise sources.
- Nevertheless, there are still noise transients, aka glitches, many with an unknown origin. In the last observing run, they happened at a rate of O(1) min⁻¹.
- Glitches can raise false alarms or overlap with GW signals, reducing the effectiveness of the detections.
- Therefore, it is important to study the different glitches, in order to identify their causes and fix the problem.

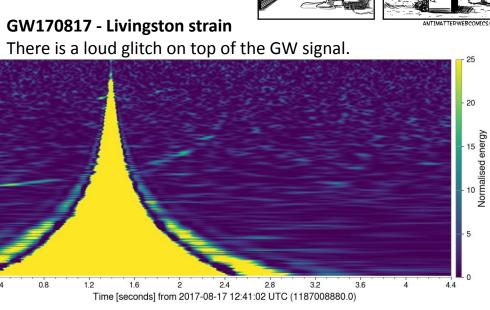
Before the O1 run, glitches were observed at 60 Hz in LIGO-Hanford, and their rate increased as the temperature got colder.

The problem was solved when a refrigerator whose bursts of power coupled into the electronics of the interferometer was unplugged.

requency [Hz]

100





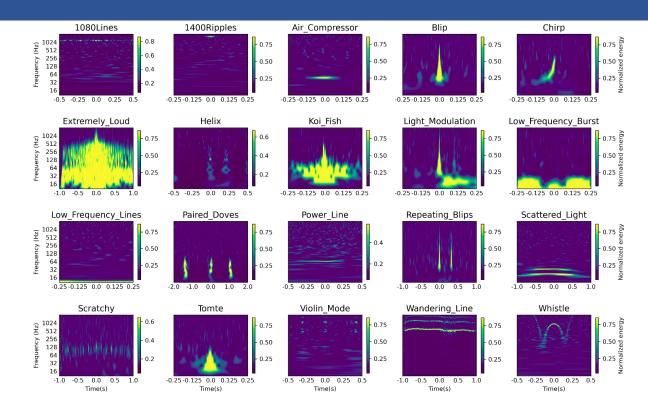
2

Dataset

- Gravity Spy v1.0 [1, 2]:
 - \circ 8583 samples of LIGO (O1 and O2) data;
 - each sample has 4 spectrograms with different durations: 0.5, 1.0, 2.0, and 4.0 seconds;
 - each sample is labelled with one of 22 classes;
 - dataset split into train, validation and test (70/15/15).
- Almost all classes are **glitches** (noise transients), but there is also a No Glitch class and a **Chirp** class, which is made of hardware injections.
- Gravity Spy is an **imbalanced** dataset, which can be problematic for DL models.

[1] S. Bahaadini et al., "Machine learning for Gravity Spy: Glitch classification and dataset," Information Sciences, vol. 444, pp. 172–186, 2018. doi: 10.1016/j.ins.2018.02.068.

[2] S. Bahaadini et al., "Machine learning for Gravity Spy: Glitch classification and dataset," Oct. 2018. url: https://zenodo.org/record/1476156

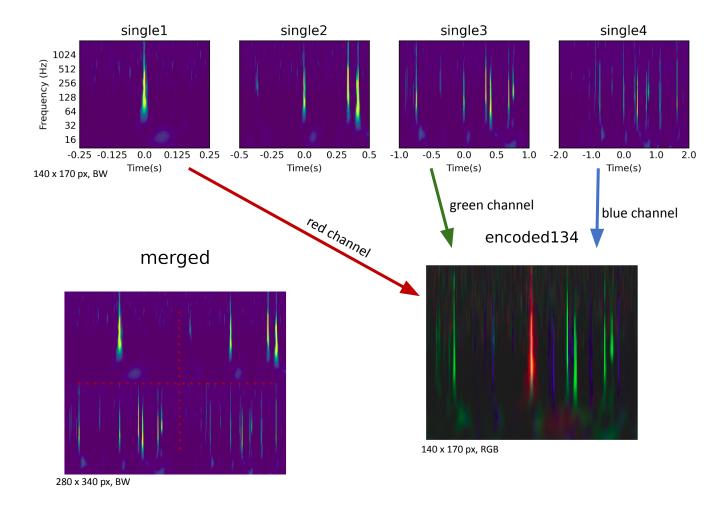


No.	Class	Total samples	No.	Class	Total samples
0	1080 Lines	328	11	No Glitch	181
1	1400 Ripples	232	12	None of the Above	88
2	Air Compressor	58	13	Paired Doves	27
3	Blip	1869	14	Power Line	453
4	Chirp	66	15	Repeating Blips	285
5	Extremely Loud	454	16	Scattered Light	459
6	Helix	279	17	Scratchy	354
7	Koi Fish	830	18	Tomte	116
8	Light Modulation	573	19	Violin Mode	472
9	Low_Frequency Burst	657	20	Wandering Line	44
10	Low Frequency Lines	453	21	Whistle	305

Baseline model

- Different views tried:
 - single views 1 to 4;
 - merged view [3];
 - encoded views [4] (every combination of at least 2 single views).
- Baseline models, trained from scratch:
 - ResNet18 and ResNet34 [5]

layer name	output size	18-layer	34-layer		
conv1	112×112	7×7, 64, stride 2			
		3×3 max pool, stride 2			
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$		
conv3_x	28×28	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$		
conv4_x	14×14	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times2$	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6$		
conv5_x	7×7	$\begin{bmatrix} 3\times3,512\\3\times3,512\end{bmatrix}\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$		
	1×1	average pool, 1	000-d fc, softmax		
FL	OPs	1.8×10^{9}	3.6×10^{9}		



[3] S. Bahaadini et al., "Deep multi-view models for glitch classification," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 2931–2935. doi: 10.1109/ICASSP.2017.7952693.

[4] D. George, H. Shen, and E. Huerta, "Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO," 2017. arXiv preprint: 1706.07446.

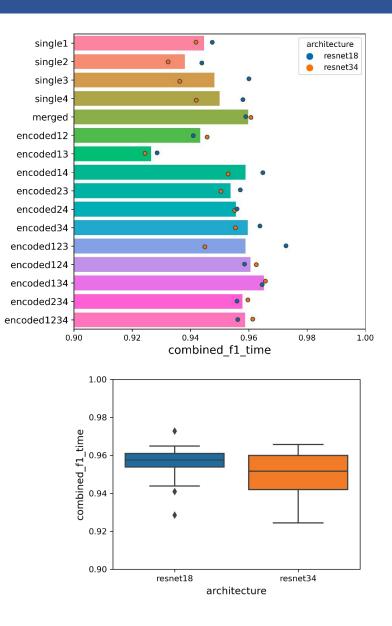
[5] K. He et al., "Deep residual learning for image recognition," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Baseline model

- Metrics:
 - (Macro-averaged) F1 score
 - combined_f1_time (avoid models which are too slow to train)

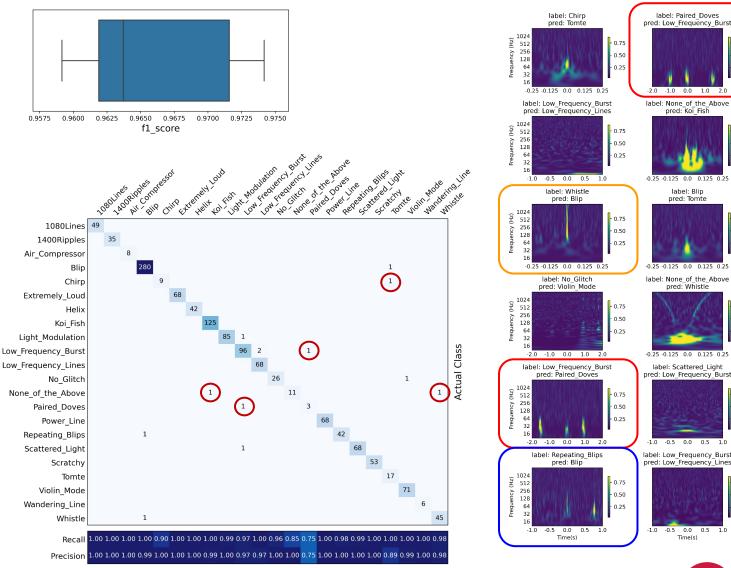
$combined_f1_time = f1_score - total_runtime/30000$

- Chosen view \rightarrow **encoded134**:
 - similar F1 score as the merged view in less time (encoding information in the channel dimension is more efficient than increasing image size);
 - F1 score higher than encoded1234 (could be due to training randomness);
 - 3-channel structure is useful for transfer learning.
- Chosen architecture \rightarrow **ResNet18**:
 - better F1 scores with less training time.



Baseline model

- Baseline configuration: \bullet
 - **ResNet18** architecture \bigcirc
 - encoded134 view \cap
 - 15 epochs Ο
 - bs 64 Ο
 - steep Ir function Ο
- The baseline configuration • was used to train five independent models.
- Evaluation on the best one on the validation dataset:
 - 97.4% F1 score \rightarrow **98.1%** after label correction;
 - Precision and recall \geq 95% for \bigcirc 18 out of 22 classes;
 - \circ $\frac{1}{3}$ of the errors involved the minority classes.
- Can results be improved if class imbalance is addressed?



Predicted Class

label: Paired Doves

pred: Koi Fish

label: Blip pred: Tomte

pred: Whistle

0.0 -0.5

Time(s)

0.75

0.50

- 0.75

- 0.50 🖁

- 0.75

- 0.50 5

- 0.25

- 0.75

0 50 3

0.75

- 0.50 🕱

- 0.25

- 0.75

- 0.50 🗑

- 0.25

Addressing class imbalance

• First approach \rightarrow increase the importance of the less common classes.

$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{k=1}^{N} w_i y_k \log(\hat{p}_k)$$

• Inverse re-weighting:

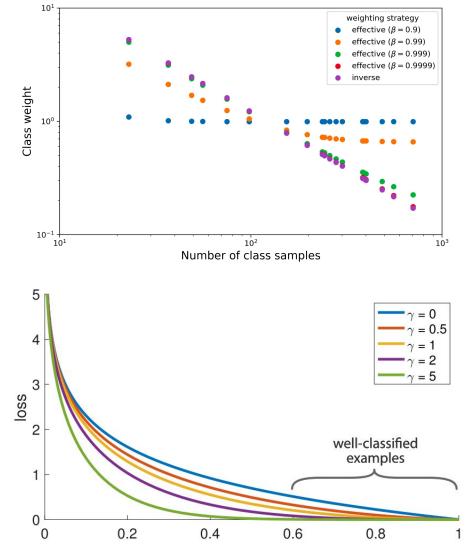
$$w_i = \frac{1}{N_i}$$

• Effective number of samples [6]:

$$w_i = rac{1-eta}{1-eta^{N_i}}$$
 , $\mathbf{\beta} \in$ [0, 1[

 Second approach → use the focal loss function [7], which decreases the importance of samples were the model is very confident.

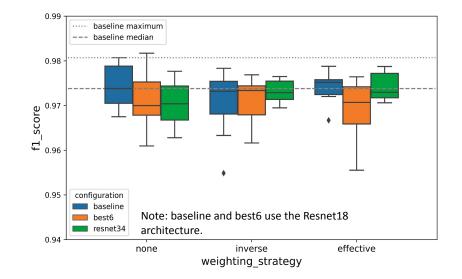
$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{k=1}^{K} w_i \left(1 - \hat{p}_k\right)^{\gamma} y_k \log(\hat{p}_k) \quad \text{, } \gamma \ge \mathbf{0}$$

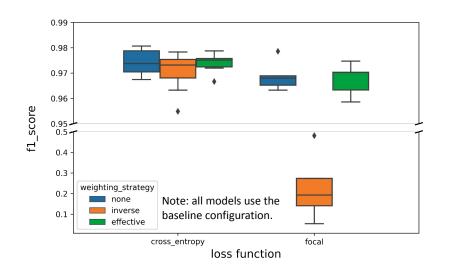


Addressing class imbalance

- First approach → increase the importance of the less common classes.
 - The ResNet18 models' performance does not increase, but
 - ResNet34's performance improves!

- Second approach → use the focal loss function [7], which decreases the importance of samples were the model is very confident.
 - Focal loss does not improve the performance.
 - It combines very badly with the inverse weighting strategy.



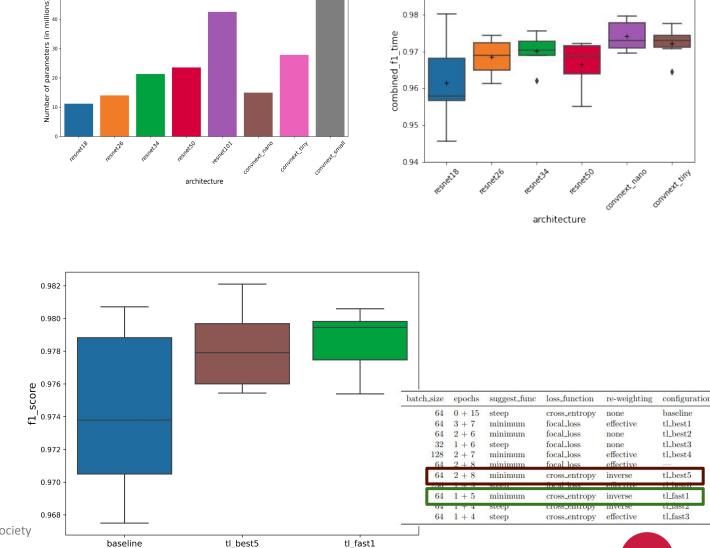


Transfer learning model

- Using pre-trained models can yield better performance and allow for faster training.
- Tested architectures:
 - Resnet18, 26, 34 and 50 [5]
 - ConvNeXt Nano and Tiny [8]
- ConvNeXt Nano outperforms the others.
- A bayesian sweep was performed to find good sets of hyperparameters for the fine-tuning of ConvNeXt Nano.
- Two of the found configurations appear to perform better than the baseline.
- The best run of tl_best5, with a 98.21% validation F1 score, was chosen as the best model.

[5] K. He et al., "Deep residual learning for image recognition," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[8] Z. Liu et al., "A ConvNet for the 2020s," 2022. arXiv preprint: 2201.03545.



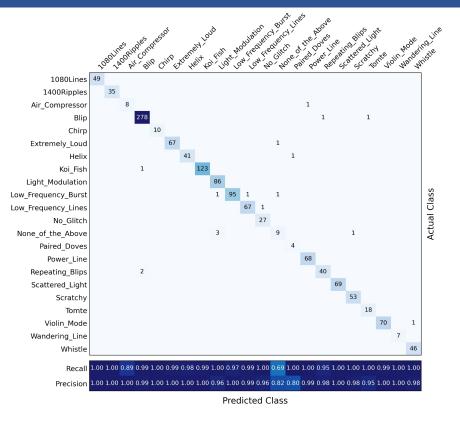
configuration

0.99

distribution average

Model evaluation on the test set

- The baseline and tl_best5 models were evaluated in the test dataset.
- The baseline model achieved higher performance, despite being worse than tl_best5 in the validation set. This could be due to having overfitted the validation set.
- The baseline model achieves precision and recall of at least 95% for 19 of the 22 classes.
- Results better than all previous articles other than George2017 [4].
- The chirp class has perfect F1 score, which motivates the next step: find if the model can correctly classify real GW signals, with no further training.



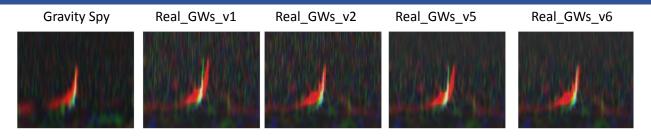
Model	F1 score $(\%)$	accuracy $(\%)$	Notes
merged view CNN [3]	not reported	96.89	different dataset version (20 classes)
merged view CNN [1]	not reported	97.67	improved version of [3]
hard fusion ensemble [1]	not reported	98.21	combines four CNNs
fine-tuned ResNet50 [4]	97.65	98.84	different split (no validation set)
tl_best5 [this work]	96.84	98.14	fine-tuned ConvNeXt_Nano
baseline [this work]	97.18	98.68	ResNet18 trained from scratch

[1] S. Bahaadini et al., "Machine learning for Gravity Spy: Glitch classification and dataset," Information Sciences, vol. 444, pp. 172–186, 2018. doi: 10.1016/j.ins.2018.02.068.
[3] S. Bahaadini et al., "Deep multi-view models for glitch classification," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 2931–2935. doi: 10.1109/ICASSP.2017.7952693.

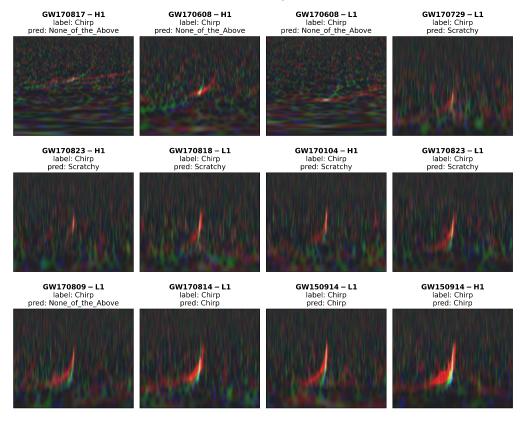
[4] D. George, H. Shen, and E. Huerta, "Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO," 2017. arXiv preprint: 1706.07446.

Testing the models with real GW signals

- The LIGO (H1 and L1) strain data from the 11 O1 and O2 confident detections were converted to a format similar to the dataset.
- 12 examples where the chirp behaviour was observable were manually selected.
- The predictions of the baseline model were heavily influenced by the sample creation pipeline.
- For the most similar dataset, Real_GWs_v6:
 - 3 events were correctly identified as Chirp \rightarrow 25% recall;
 - 4 were labelled as None of the Above (mainly due to different morphology);
 - 5 identified as Scratchy (low energy GW signal).

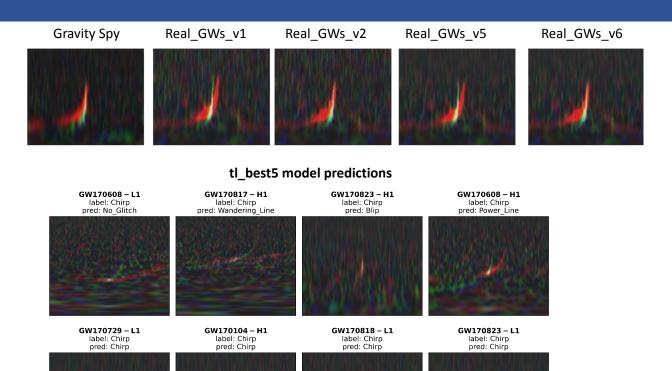


baseline model predictions



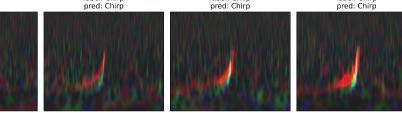
Testing the model with real GW signals

- The best model trained with transfer • learning was also tested on the real GWs.
- For Real_GWs_v6 8 events were correctly • identified as Chirp \rightarrow 75% recall!
- For the other dataset versions, the recall • was at least equal. The TL model was much more robust, even when the channels were shifted.



GW150914 - H1

label: Chirp



GW170814 – L1

label: Chirp

GW170809 - L1

label: Chirp

GW150914 - L1

label: Chirp

pred: Chirp

- Deep Learning is a good approach for the classification of glitches, particularly when converted to spectrograms.
- Encoded views are an effective way of presenting information to the models.
- Small models appear to be enough to separate the different glitch classes.
- Models trained with less than 50 chirp examples were capable of detecting real GWs.
- Bigger datasets, including O3 data, are needed¹.
- Synthetic data generation could help populate the less represented classes.

THANK YOU FOR YOUR ATTENTION!