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  Introduction

• Measuring GWs requires very sensitive 
detectors. LIGO detectors are equipped 
with systems to minimize several noise 
sources.

• Nevertheless, there are still noise 
transients, aka glitches, many with an 
unknown origin. In the last observing run, 
they happened at a rate of O(1) min-1.

• Glitches can raise false alarms or overlap 
with GW signals, reducing the effectiveness 
of the detections.

• Therefore, it is important to study the 
different glitches, in order to identify their 
causes and fix the problem.
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GW170817 - Livingston strain
There is a loud glitch on top of the GW signal.

Before the O1 run, glitches 
were observed at 60 Hz in 
LIGO-Hanford, and their rate 
increased as the temperature 
got colder.
The problem was solved when 
a refrigerator whose bursts of 
power coupled into the 
electronics of the 
interferometer was unplugged.



  Dataset

• Gravity Spy v1.0 [1, 2]:
○ 8583 samples of LIGO (O1 and O2) data;
○ each sample has 4 spectrograms with 

different durations: 0.5, 1.0, 2.0, and 4.0 
seconds;

○ each sample is labelled with one of 22 
classes;

○ dataset split into train, validation and test 
(70/15/15).

• Almost all classes are glitches (noise 
transients), but there is also a No Glitch class 
and a Chirp class, which is made of hardware 
injections.

• Gravity Spy is an imbalanced dataset, which 
can be problematic for DL models.
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  Baseline model

• Different views tried:
○ single views 1 to 4;
○ merged view [3];
○ encoded views [4] (every 

combination of at least 2 single 
views).

• Baseline models, trained from scratch: 
○ ResNet18 and ResNet34 [5]
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  Baseline model
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• Metrics:
○ (Macro-averaged) F1 score
○ combined_f1_time (avoid models which are too 

slow to train)

• Chosen view → encoded134: 
○ similar F1 score as the merged view in less time 

(encoding information in the channel dimension is 
more efficient than increasing image size);

○ F1 score higher than encoded1234 (could be due 
to training randomness);

○ 3-channel structure is useful for transfer learning.

• Chosen architecture → ResNet18:
○ better F1 scores with less training time.



  Baseline model
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• Baseline configuration:
○ ResNet18 architecture
○ encoded134 view
○ 15 epochs
○ bs 64
○ steep lr function

• The baseline configuration was 
used to train five independent 
models.

• Evaluation on the best one on the 
validation dataset:
○ 97.4% F1 score → 98.1% after 

label correction;
○ Precision and recall ≥ 95% for 

18 out of 22 classes;
○ ⅓ of the errors involved the 

minority classes.
• Can results be improved if class 

imbalance is addressed?



  Addressing class imbalance

7

• First approach → increase the importance of the 
less common classes.

○ Inverse re-weighting:

○ Effective number of samples [6]:

• Second approach → use the focal loss function [7], 
which decreases the importance of samples were 
the model is very confident.

, β ∊ [0, 1[

 [6] Y. Cui et al., “Class-balanced loss based on effective number of samples,” Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, vol. 2019-June, pp. 9260–9269, 2019. doi: 10.1109/CVPR.2019.00949
  [7] T. Lin et al., “Focal Loss for Dense Object Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, 
pp. 318–327, 2020. doi: 10.1109/TPAMI.2018.2858826
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  Addressing class imbalance
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• First approach → increase the importance of the 
less common classes.
○ The ResNet18 models’ performance does not 

increase, but
○ ResNet34’s performance improves!

• Second approach → use the focal loss function [7], 
which decreases the importance of samples were 
the model is very confident.
○ Focal loss does not improve the performance.
○ It combines very badly with the inverse 

weighting strategy.

Note: baseline and best6 use the Resnet18 
architecture.

Note: all models use the 
baseline configuration.



  Transfer learning model
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• Using pre-trained models can yield 
better performance and allow for faster 
training.

• Tested architectures:
○ Resnet18, 26, 34 and 50 [5]
○ ConvNeXt Nano and Tiny [8]

• ConvNeXt Nano outperforms the others.

• A bayesian sweep was performed to find 
good sets of hyperparameters for the 
fine-tuning of ConvNeXt Nano.

• Two of the found configurations appear 
to perform better than the baseline.

• The best run of tl_best5, with a 98.21% 
validation F1 score, was chosen as the 
best model.

   [5] K. He et al., “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 770–778, 2016. doi: 
10.1109/CVPR.2016.90.
   [8] Z. Liu et al., “A ConvNet for the 2020s,” 2022. arXiv preprint: 2201.03545.



  Model evaluation on the test set
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• The baseline and tl_best5 models were 
evaluated in the test dataset.

• The baseline model achieved higher 
performance, despite being worse than 
tl_best5 in the validation set. This could be 
due to having overfitted the validation set.

• The baseline model achieves precision and 
recall of at least 95% for 19 of the 22 
classes.

• Results better than all previous articles 
other than George2017 [4].

• The chirp class has perfect F1 score, which 
motivates the next step: find if the model 
can correctly classify real GW signals, with 
no further training.

   [1] S. Bahaadini et al., “Machine learning for Gravity Spy: Glitch classification and dataset,” Information Sciences, vol. 444, pp. 172–186, 2018. doi: 10.1016/j.ins.2018.02.068.
   [3] S. Bahaadini et al., “Deep multi-view models for glitch classification,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 
2931–2935. doi: 10.1109/ICASSP.2017.7952693.
   [4] D. George, H. Shen, and E. Huerta, “Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO,” 2017. arXiv preprint: 1706.07446.



  Testing the models with real GW signals
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• The LIGO (H1 and L1) strain data from the 
11 O1 and O2 confident detections were 
converted to a format similar to the 
dataset.

• 12 examples where the chirp behaviour 
was observable were manually selected. 

• The predictions of the baseline model were 
heavily influenced by the sample creation 
pipeline.

• For the most similar dataset, 
Real_GWs_v6: 
○ 3 events were correctly identified as 

Chirp → 25% recall;
○ 4 were labelled as None of the Above 

(mainly due to different morphology); 
○ 5 identified as Scratchy (low energy 

GW signal).

Gravity Spy Real_GWs_v1 Real_GWs_v2 Real_GWs_v5 Real_GWs_v6

baseline model predictions



  Testing the model with real GW signals
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• The best model trained with transfer 
learning was also tested on the real GWs.

• For Real_GWs_v6 8 events were correctly 
identified as Chirp → 75% recall!

• For the other dataset versions, the recall 
was at least equal. The TL model was much 
more robust, even when the channels 
were shifted.

Gravity Spy Real_GWs_v1 Real_GWs_v2 Real_GWs_v5 Real_GWs_v6

tl_best5 model predictions



  Conclusion
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• Deep Learning is a good approach for the classification of glitches, 
particularly when converted to spectrograms.

• Encoded views are an effective way of presenting information to the models.
• Small models appear to be enough to separate the different glitch classes.
• Models trained with less than 50 chirp examples were capable of detecting 

real GWs.

• Bigger datasets, including O3 data, are needed1. 
• Synthetic data generation could help populate the less represented classes.

1 
You can help by participating in the citizen science project at https://www.zooniverse.org/projects/zooniverse/gravity-spy

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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