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Gravitational Waves | Introduction

The theory of general relativity predicts the emission of wave-like
perturbations in the space-time fabric, which we call
gravitational-waves (GW).

A few examples of predicted sources or occurrences of GW include:
• Background radiation
• Periodic emitters (e.g. pulsars)
• Gravitational collapse (e.g. stellar core collapse)
• Compact Binary Coalescences (CBC) (e.g. Binary Neutron Star
(BNS) systems)
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Gravitational Waves | Detection

Based on a Michelson
Interferometers:
• In anti-phase
• Arms generally
l ∼ 100 − 101km

• Usually include Fabry-Perot
cavities

A GW generates an asymmetrical
variation of the light path in each
arm.

Figure 1: Simplified diagram of an
Advanced LIGO detector (Credits:
LIGO)
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Gravitational Waves | LIGO-Virgo

(At least) three large experiments
currently:
• LIGO - USA
• Virgo - Italy
• KAGRA - Japan

Frequency range:

f ∼ 101 − 104Hz

GW150914: First detection of GW -
binary black holes (M1 ≈ 36M⊙

and M2 ≈ 29M⊙). Figure 2: LIGO Livingston observatory.
Louisianna, USA.
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Gravitational Waves | Detection

The search for GW events is done applying Bayesian
matched-filtering approaches. This has been proven to be effective,
but:

• It is computationally expensive and requires a large
computation infrastructure for real-time detection;

• It may be affected by glitches/transient noise.
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Deep Learning | Introduction

Deep Learning (DL) is a subset of
Machine Learning (ML) where
usually complex neural networks
are trained to perform a specific
task by using large amounts of
data. The training process it is
comprised of an iterative process
where the network weights are
adjusted to minimize a loss
function that defines the
performance of the network.

Figure 3: Example of the structure of a
neural network used in deep learning
tasks.
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Deep Learning | Object detection models

Figure 4: Structure of a generic object
detection pipeline. Figure 5: Example of the

output of an object detection
network.
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Our approach to BNS GW detection | Introduction

Can we use object detection to detect and locate a GW signals?

There are a few problems:
• The GW data must be
represented as images;

• For ML tasks we require a very
large dataset.

We use the well-established
Ultralytics YOLOv5 model and we
focus on detecting BNS mergers.

Figure 6: Performance comparison of
YOLOv5 variants and the EfficientDet
model in the COCO val2017 dataset.
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Our approach to BNS GW detection | Dataset generation

We generate noise and strain (injection) samples using PyCBC,
obtaining simulated CBC GW waveforms.

Figure 7: Generation of GW CBC waveforms 10



Our approach to BNS GW detection | Dataset generation

We use the Constant Q-Transform to convert the waveform into a
spectrogram image.

Figure 8: Spectrogram generated using the Constant Q-Transform
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Our approach to BNS GW detection | Dataset generation

Since we know where the merger occurs, we can make any cut we
desire and know where the event is located in the final image.

gw

gw

Figure 9: Automatic labelling of the injection object 12



Our approach to BNS GW detection | Results

Table 1: Precision, Recall, Mean Average Precision [0.50] (mAP0.50), and Mean
Average Precision [0.50:0.95] (mAP0.50:0.95) values for the best epoch (200) for
the validation dataset

. Precision Recall mAP0.5 mAP0.5:0.95
0.922 0.823 0.945 0.893

Table 2: Precision, Recall, Mean Average Precision [0.50] (mAP0.50), and Mean
Average Precision [0.50:0.95] (mAP0.50:0.95) values of the test dataset with ratio
50/50(%obj/%bg) of object/background samples, for a total of 20000 samples.

Precision Recall mAP0.5 mAP0.5:0.95
0.933 0.820 0.947 0.894
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Our approach to BNS GW detection | Detecting GW170817

Applying the trained model
to the GW170817 event data
of the LIGO Hanford (H1)
detector, we obtain a
successful detection with a
very high confidence value.

(a) te − 8s < t < te (b) te − 4s < t < te + 4s

Figure 10: Spectrograms of the GW170817
event data from the LIGO H1 detector and
respective event detection bounding boxes
and confidence value obtained by applying
the trained YOLOv5 model
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Our approach to BNS GW detection | Detecting GW170817

Doing the same for the
LIGO Livingston (L1)
detector, we get no
detection mainly due to
the large glitch overlapping
the event.

(a) te − 8s < t < te (b) te − 4s < t < te + 4s

Figure 11: Spectrograms of the GW170817
event data from the LIGO L1 detector with
visible glitch
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Our approach to BNS GW detection | Detecting GW170817

Despite this, if we limit the
pixel values to a
reasonable value for true
GW data, the GW strain
becomes visible and the
model is able to correctly
detect it, even in the
presence of the glitch.

(a) te − 8s < t < te (b) te − 4s < t < te + 4s

Figure 12: Spectrograms of the GW170817
event data from the LIGO L1 detector limited
to xij = 256 and respective event detection
bounding boxes and confidence value
obtained by applying the trained YOLOv5
model
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Conclusions and future work

With this proof of concept we have concluded that:

• CV object-detection pipelines can be used for detecting events
in GW spectrograms

• The detection can be done extremely quickly and efficiently
• It can be robust to glitches or partial degradation of the signal

A few improvements and future work may include:

• Find ways to improve low SNR performance
• Apply this model in other classes of object (e.g. glitches)
• Test the classification capabilities of the model
• Test other object-detection models
• Study the impact of the image conversion process on the
performance of the network
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Precision, Recall, and Average Precision (AP)

Figure 13: Precision and recall Figure 14: Precision/recall curve
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