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Overview

• Introduction to Machine Learning 

• Physics Model  

• Machine Learning in our model 

• An overview of Machine Learning in Physics 
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Based on Oxford Languages by Google

The definition of Machine Learning (ML) is: The use and development of computer systems that are 
able to learn and adapt without following explicit instructions, by using algorithms and statistical 
models to analyse and draw inferences from patterns in data.

The definition of Deep Learning (DL) is: A type of machine learning based on artificial neural networks 
in which multiple layers of processing are used to extract progressively higher level features from 
data.

If you are interested in ML or DL and you don’t know how to start join Kaggle [1]

Kaggle offers a no-setup, customizable, Jupyter Notebooks environment. Access GPUs at no cost to you 
and a huge repository of community published data & code. (There are also courses for beginners)

Introduction to Machine Learning

https://www.kaggle.com
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The most known example of DL is the discrimination of pictures that have cats & dogs 
If you are interested to try it, try the example of Kaggle [2] (Keras Convolutional neural network-CNN)

The main idea is that we build a neural network (NN) and we train it with images of cats and dogs. Then 
we use another set of images that are unknown to the neural network and we measure its success in the 
discrimination between cats and dogs.

In the example in Kaggle, the NN had an average score of 94.6% Success rate 

Cat Dog ?
Dog

Introduction to Machine Learning

https://www.kaggle.com/code/serkanpeldek/keras-cnn-transfer-learnings-on-cats-dogs-dataset
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Physics Model 

The Standard Model (SM)

The Picture is take from CERN web page [3]

https://home.cern/science/physics/standard-model
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Physics Model 

The Standard Model (SM)

Inconsistencies 
No Gravity in SM
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Physics Model 

The Standard Model (SM)

Inconsistencies 

No Gravity in SM


No Dark Matter in SM


Neutrino oscillations


Baryon Asymmetry

We extend the SM and we introduce new scalar particles 

(Multiscalar models)

H2 A H±



A generic Next-to-Minimal Two Higgs Doublet Model (NTHDM) with a 
BGL structure [4]

That follow the Branco-Grimus-Lavoura (BGL) quark textures.

An Standard Model (SM) extension with:


• a flavour non-universal  global symmetry, 


• a second Higgs Doublet , 


• a scalar singlet  


• three generations of right-handed neutrinos , with a type-I seesaw mechanism

U(1)′￼

Φ2

S
ν1,2,3

R
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Physics Model 

https://doi.org/10.48550/arXiv.2202.13153
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Physics Model 

H3 A3

H2 A2

H±

ν1
R

ν2
R

ν3
R

Interesting topology
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Physics Model 



• Mass information can be use to match pairs 
of jets to original scalars fields


• 

- Signal: small 

- Background Arbitrary 


• Loop over all possible combinations of jets 
and select the pairs with smallest 

ΔM = M( j1, j2) − M( j3, j4) < ε
ε

ε

ε

Match jets to  scalar:  

If the minimum is for pair , then this is matched to the  and the pair 

 is matched to the . 

Since  is expected to be arbitrary, the matching procedure can help reduce 
backgrounds for small values of .

H2 min( |M( jn, jm) − M(Z0) − M(H2) | )
( j3, j4) blue leg

( j1, j2) red leg
ε

ε

Physics Model 
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Relaxed constraints on jet mass distributions increases the significance. Particularly 
helpful for lower mass scalar fields. Still, high cuts on data for optimal results.

Machine Learning in our model
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Overview of Machine Learning in Physics

What can ML do in Particle Physics?
The use of neural networks for discrimination of images is very efficient, as we so in 
the example of  Cats vs Dogs.

Also, neural networks are very good in the separation of signal and background. 

Except of our work, another example is : Phenomenology at the Large Hadron 
Collider with Deep Learning: the case of vector-like quarks decaying to light jets [5], 
and many other where we use NN to separate signal from background.

But is ML only good to do discrimination between signal and background?

https://doi.org/10.48550/arXiv.2204.12542


17

Overview of Machine Learning in Physics

In the resent work (Published 14 September 2022): Learning tree structures from leaves for particle 
decay reconstruction [6]

Their results show that when selecting an appropriate Graph Neural 
Network (GNN), in this case the Neural Relational Inference (NRI) 
encoder, the network is able to correctly predict the lowest common 
ancestor generations (LCAG) matrix for 92.5% of decay trees up to 6 
leaves 

http://10.1088/2632-2153/ac8de0
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Overview of Machine Learning in Physics

An other interesting use of ML this time for theoretical particle physics is explored in: Exploring 
Supersymmetry with machine learning [7]
They propose a self-exploration method, named Machine Learning Scan (MLS), to achieve an efficient 
test of models.

The MLS works iteratively. First, train machine learning 
models using the already collected samples as training 
data. Then, sample the important regions according to 
the reconstructed likelihood. Next, calculate observables 
of the recommended points using HEP packages, and 
append these samples to the training set to improve the 
machine learning models in the next iteration. The 
procedure repeats until sufficient target samples are 
collected.

https://doi.org/10.48550/arXiv.1708.06615
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Conclusion

ML can be a powerful tool and used for different approaches (theoretical physics, 
experimental physics, phenomenology )


It can be time and sources efficient.


Currently, ML is rising and we are trying to explore new ways that we can use that 
powerful tool.



Thank you very much!
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−ℒYukawa = q0
LΓaΦad0

R + q0
LΔaΦ̃au0

R + ℓ0
LΠaΦae0

R + ℓ0
LΣaΦ̃aν0

R

+
1
2

νc 0
R (A + BS + CS*) ν0

R + h . c . ,

 : Yukawa matrices for the down- and up- quarks, 

 : Yukawa matrices for the charged leptons and neutrinos 


 : Majorana-like Yukawa matrices 

A : Majorana mass term

Γα, Δα

Πα, Σα

B, C

Γ1 : (
× × ×
× × ×
0 0 0 ) , Γ2 : (

0 0 0
0 0 0
× × × ) , Δ1 :

× × 0
× × 0
0 0 0

, Δ2 :
0 0 0
0 0 0
0 0 ×

Note: The choice of textures implies that tree-level FCNCs will appear only in the down quark sector 
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Physics Model 



(Nu)ij
= (tβδij − (tβ + t−1

β ) δijδj3) muj
,

(Nd)ij
= (tβδij − (tβ + t−1

β ) V*3iV3j) mdj
,

Rotating the Yukawa matrices in the Higgs base:

, : Cabibbo–Kobayashi–Maskawa (CKM), flavor changing neutral current (FCNC)tβ = tan β = v1/v2 V
24

• Only the down-quark sector has non-diagonal terms (FCNCs on the down sector)


• FCNCs suppressed by CKM matrix elements

BGL was introduced in:

Physics Model 



V0 = μ2
i |Φi |2 + λi |Φi |4 + λ3 |Φ1 |2 |Φ2 |2 + λ4 |Φ†

1Φ2 |2 + μS2 |S |2 + λ′￼1 |S |4

+λ′￼2 |Φ1 |2 |S |2 + λ′￼3 |Φ2 |2 |S |2 (i = 1,2) and

V1 = μ2
3Φ†

2Φ1 +
1
2

μ2
bS2 + a1Φ†

1Φ2S + a2Φ†
1Φ2S† + a3Φ†

1Φ2S2 + a4Φ†
1Φ2S†2 + h . c . .

The potential is defined as V = V0 + V1

Given that the singlet  carries a non-trivial ′ charge , then, out of the four 
 and  terms, only one is allowed in the limit of an exact . However, 

both  and , as well as , can be introduced to softly break the flavour 
symmetry.

S U(1)′￼ XS
a1,2,3,4 μb U(1)′￼

a1 a2 μb
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Also the model is gauge anomaly free[1]

This work was inspired considering local ′ symmetry where gauge anomalies are forbidden.[1] U(1)′￼

Physics Model 



Anomaly-free solution
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Physics Model 



Model Introduction
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Table 1: Allowed charges for the various models. For model BGL-I and -IIa we have  and . Model 
BGL-IIb has and . In order for the BGL textures to be preserved, we additionally require 
that .

ν xtL = − 7x + 2y xtR = − 16x + 5y ν
xtL = (−13x + 4y)/3 xtR = (−32x + 11y)/3

y ≠ 4x



Chosen Scenario: νBGL-I
x = 1 , y = 1/3
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Physics Model 
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• Only the down-quark sector has non-diagonal terms (FCNCs on the down sector)


• FCNCs suppressed by CKM matrix elements

BGL was introduced in:
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Also the model is gauge anomaly free[1]

This work was inspired considering local ′ symmetry where gauge anomalies are forbidden.[1] U(1)′￼



Model Introduction

Anomaly-free solution
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Model Introduction
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Table 1: Allowed charges for the various models. For model BGL-I and -IIa we have  and . Model 
BGL-IIb has and . In order for the BGL textures to be preserved, we additionally require 
that .

ν xtL = − 7x + 2y xtR = − 16x + 5y ν
xtL = (−13x + 4y)/3 xtR = (−32x + 11y)/3

y ≠ 4x



Model Introduction

Chosen Scenario: νBGL-I
x = 1 , y = 1/3
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For the peruse of this analysis we have test our model under 


1) STU electroweak precision observables (or oblique parameters), 

2) Higgs observables 

3) Most relevant Quark Flavour Violation (QFV) observables 

Restrictions

1) STU: We use the values for the electroweak fit for the STU parameter from [41], and 
we use also SPheno to calculate the STU in our model.

Were we require , which is 
translated to 95% confidence level (CL) 
agreement with the electroweak fit.

Δx2 < 7.815
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2) Higgs observables: For the Higgs observables we have used SPheno to calculate the 
values in our model and HiggsBounds/HiggsSignals for the validity of our model



Results
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Restrictions

3) For the Quark Flavour Violation (QFV) observables we have only take into 
consideration the most relevant channels summarised in the table below.
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Results

38



Results

Figure 5: Histograms containing points that survive STU, HS, HB 
and a given QFV (or pair of) in bins of the  mass. The most 
restrictive is coloured in .

A2
blue



Results

40



Results

41


