

Use of deep learning generative models for Monte Carlo event simulation in the context of LHC experiments

Raúl Balanzá García *Cotutors:* Jon Ander Gómez Adrián, José Francisco Salt Cairols, Roberto Ruiz de Austri Bazan

3rd Workshop on Compact Objects, Gravitational Waves and Deep Learning University of Minho

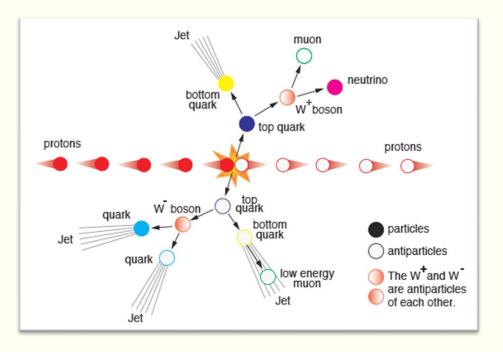
Index

- 1. Introduction
- 2. Data
- 3. Models
- 4. Experimentation
- 5. Conclusions

INTRODUCTION

1. Introduction Problem definition

- Standard Model: current theoretical physics framework
 - Does not explain some key aspects of the behaviour of matter
- LHC (CERN) \rightarrow experimentation looking for new models
 - *1. p-p* collisions are produced to obtain **real data**
 - 2. Simulated data is generated based on new models: *New Physics*
 - 3. Both data are compared \rightarrow verify new model



1. Introduction **Objetives**

Generating simulated events is <u>very costly</u>

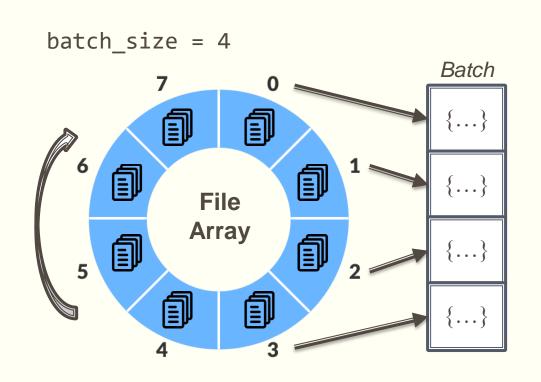
- Traditional methods (Monte Carlo) consume lots of time and energy
- Future experiments \rightarrow <u>billions of events</u> \rightarrow not feasible with current models
- *Solution:* generative models → generate events in an **efficient** way

Objetives

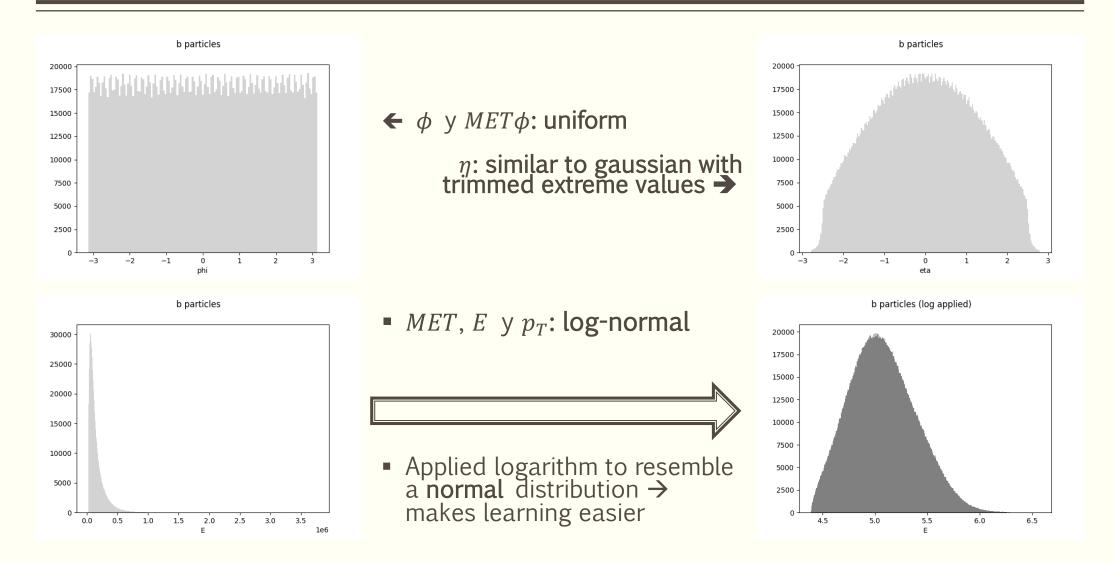
- Create generative models to generate events based on data that was generated through simulation by the Monte Carlo method
- Accelerate the generation process to reduce the energy and time costs
- Keep the accuracy of generated events
- Determine which is the best model

DATA

- Dataset with processes from the Standard Model and New Physics
 - Contains generated <u>events</u> \rightarrow traditional methods
- Information per event:
 - MET
 - ΜΕΤφ
 - Per each particle (max. 19):
 - E, η, ϕ, p_T
- Used processes:
 - Standard Model: *ttbar*
 - New Physics: stop_02
- Huge amount of information
 - Impossible to load in main memory
 - *Solution:* circular buffer

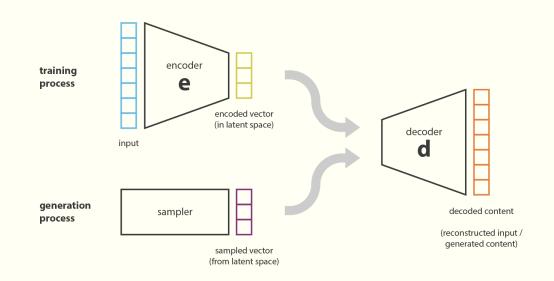


3. Data **Probability distributions**



2. Models Variational Autoencoders

- Generative model
- Training/generation:
 - 1. Encode the input to the *latent space*
 - 2. Generate data following its probability distribution*
 - 3. Decode data to input dimensions
- Variants: β -VAE and α -VAE



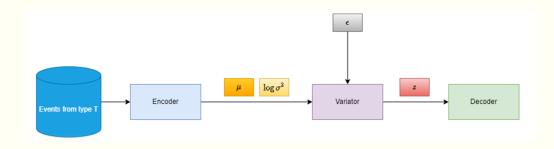
2. Models VAE variants

β -VAE

• Loss function weights are proportional to β : $L_{VAE} = (1 - \beta)MSE + \beta KL$

• Encoding:
$$z = \epsilon * e^{\frac{1}{2}\log \sigma^2} + \mu$$

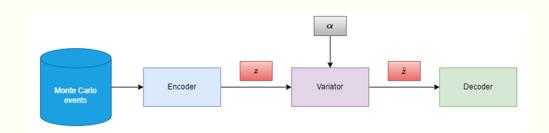
•
$$\epsilon \sim \mathcal{N}(\mu = 0, \sigma = 1)$$



α -VAE

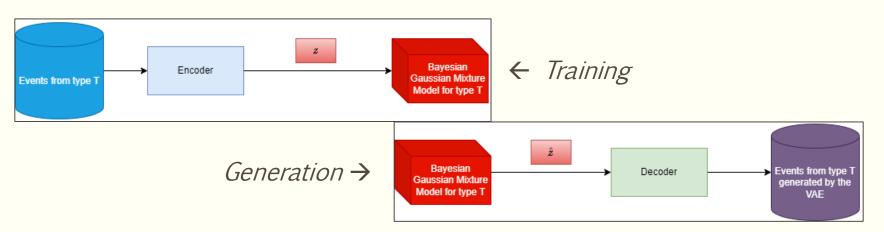
 Gaussian noise is added to the encoding with the following distribution:

$$\mathcal{N}(\mu = 0, \sigma = \alpha)$$



2. Models Bayesian Gaussian Mixture Models

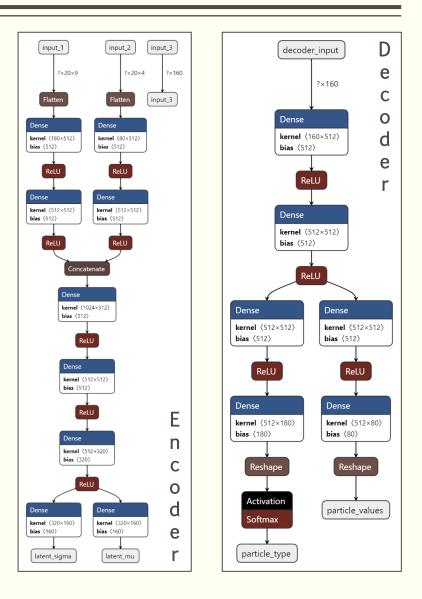
- Unsupervised learning model
- Assumes: data can be described by a normal distribution
- Has γ components
 - Each one is a multivariate Gaussian distribution
 - Has its own mean vector and covariance matrix
- Generates data based on the learned distribution.



EXPERIMENTATION

4. Experimentation Experiment I: Initial model

- $MET + MET\phi$ considered one more particle
- Input/output data \rightarrow 2 capas
 - Particle identifier (1-Hot vector)
 - Particle properties (E, η, ϕ, p_T)
- Physics process: *ttbar* (Standard Model)
- Model: β-VAE + BGMM
 - $\beta \in \{0.0, 0.001, 0.01, 0.1, 0.2, 0.5\}$
 - $\gamma \in \{10, 50, 100\}$

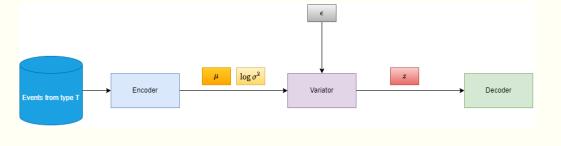


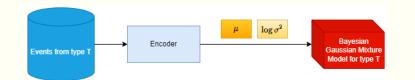
4.1. Experiment I Training and generation

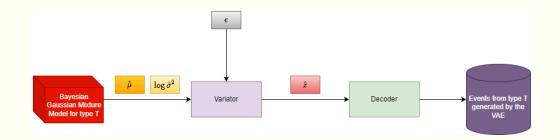
1. Training the β -VAE with original data

2. Training the BGMM with encodings of the *already trained encoder*

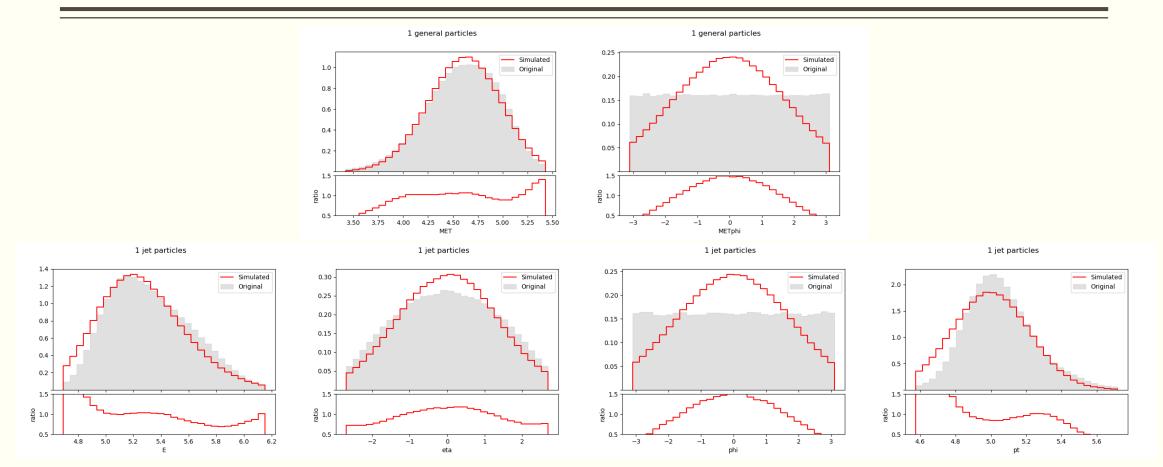
3. Generation of events taking the BGMM as the starting point







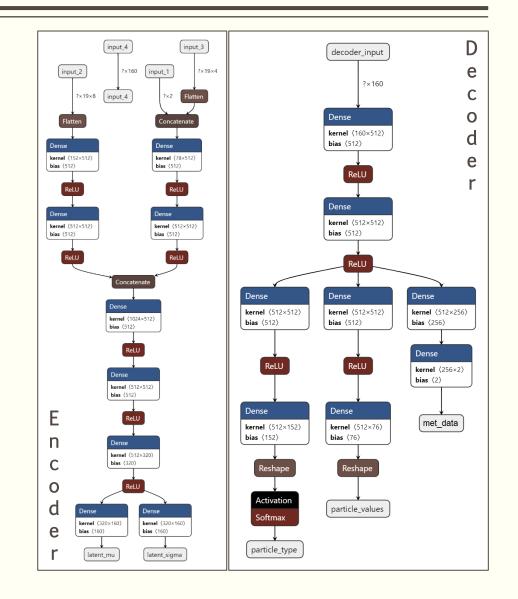
4.1. Experiment I Results ($\beta = 0.01, \gamma = 50$)



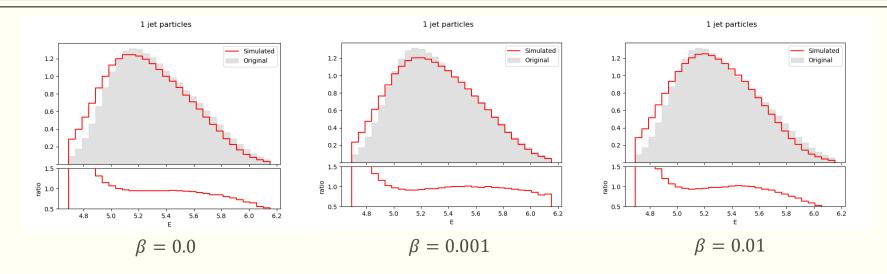
• *Problem:* uniform distributions.

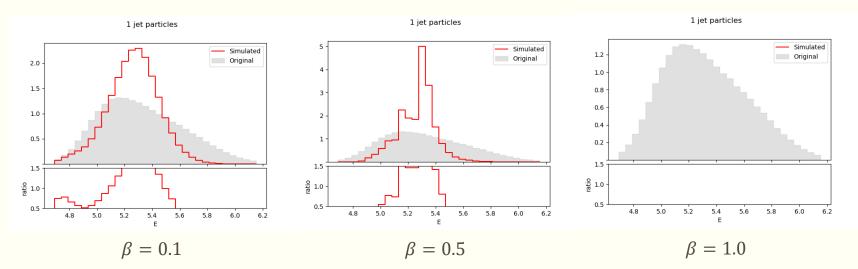
4. Experimentation Experiment II: Input splitting

- Split $MET + MET\phi$ in a separate layer
- Same training process
- Physics process: *ttbar* (Standard Model)
- Input/output data → 3 layers
 - Particle identifier (1-Hot vector)
 - *MET* + *METφ*
 - Particle properties (E, η, ϕ, p_T)
- Model: β-VAE (+ BGMM)
 - $\beta \in \{0.0, 0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 1\}$
 - γ = 100

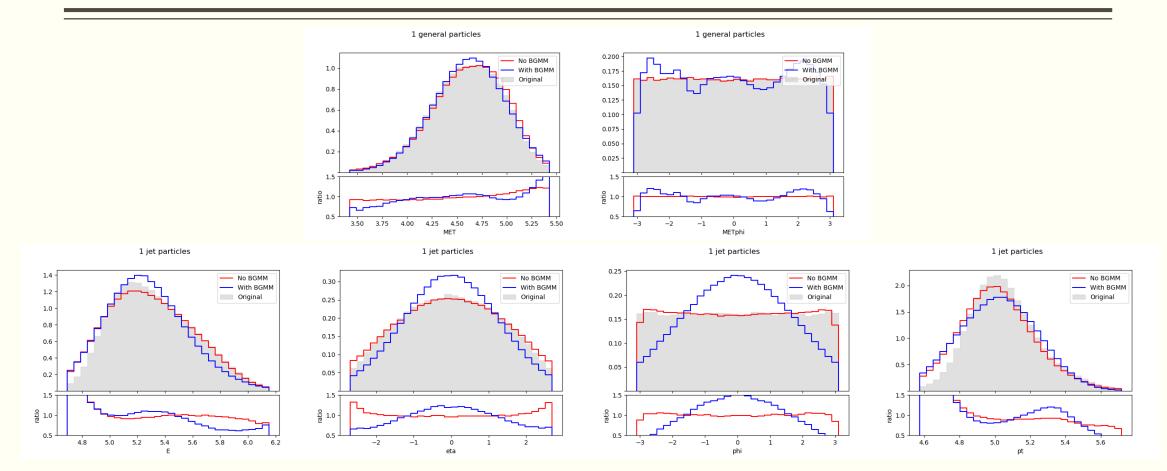


4.2. Experiment II Results – comparing β in attribute *E* of the 1st jet





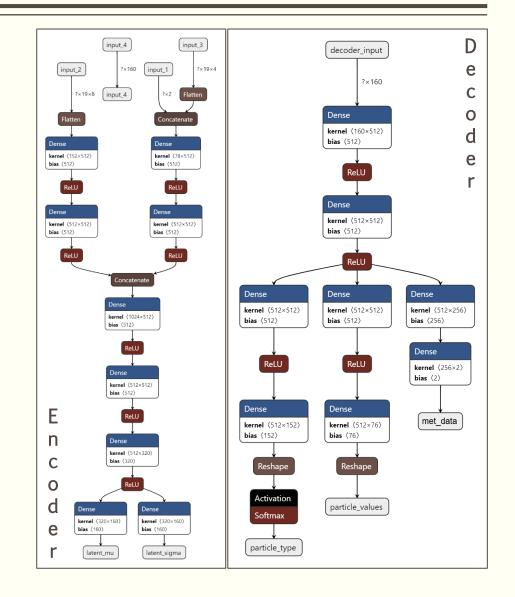
4.2. Experiment II Results ($\beta = 0.001, \gamma = 100$)



• *Observation:* uniform distributions are correct in the model without BGMM.

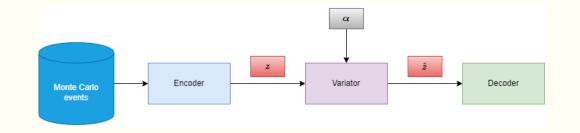
4. Experimentation Experiment III: Introducing the α -VAE

- Same VAE architecture from experiment II
 - The variator changes
- Physics process: *ttbar* (Standard Model)
- Model: α-VAE (+ BGMM)
 - $\alpha \in \{0.1, 0.2, 0.3\}$
 - $\gamma = \{10, 20, 50, 100\}$

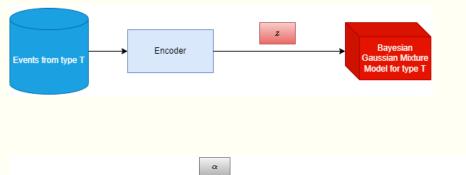


4.3. Experiment III Training and generation

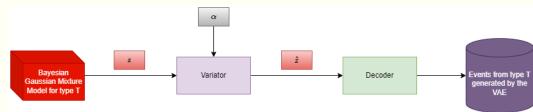
1. Training the α -VAE with original data



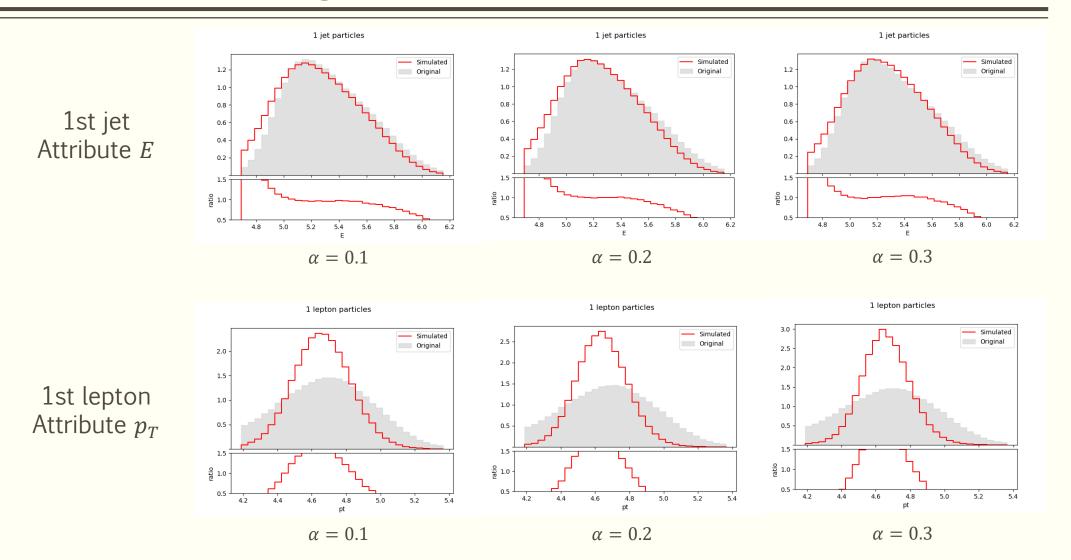
2. Training the BGMM with encodings of the *already trained encoder*



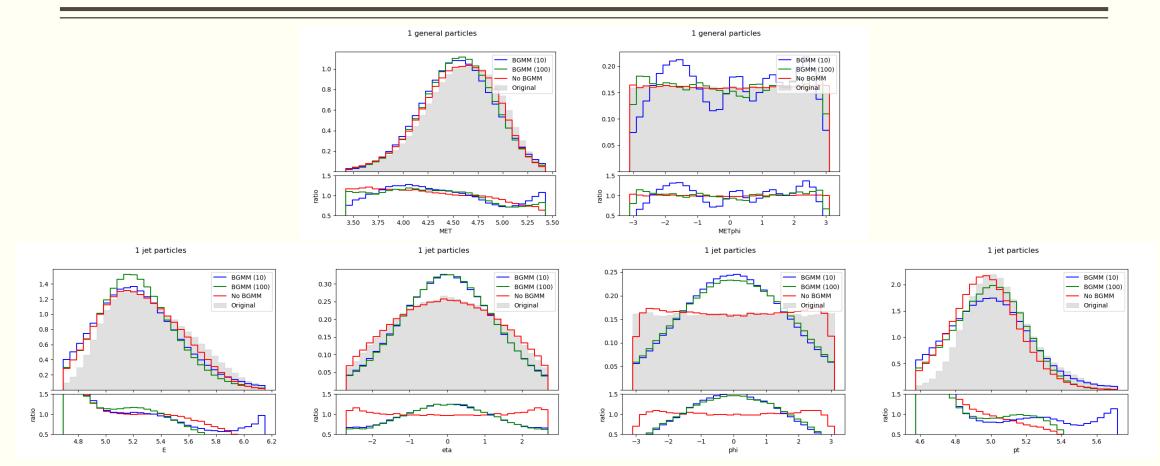
3. Generation of events taking the BGMM as the starting point



4.3. Experiment III **Results – comparing** *α*



4.3. Experiment III Results ($\alpha = 0.2, \gamma \in \{10, 100\}$)

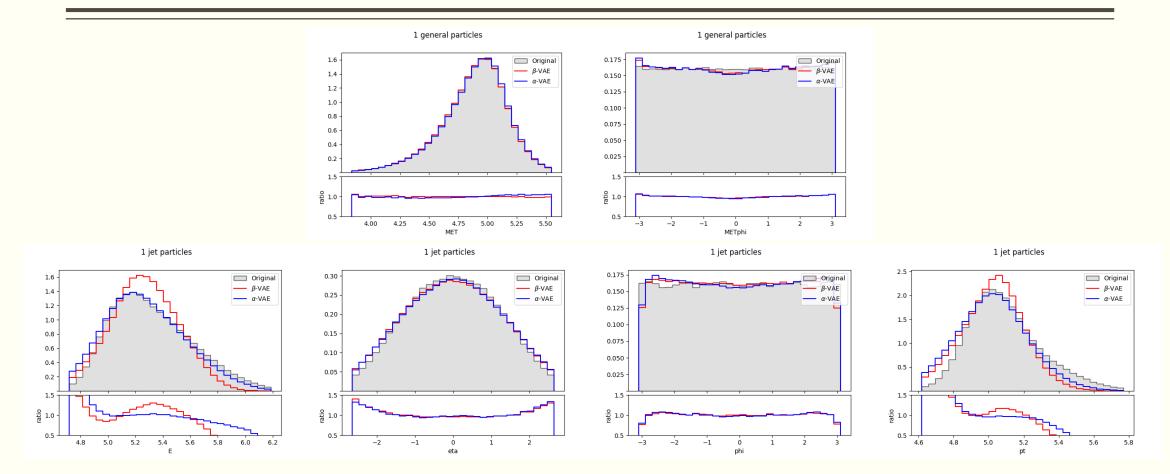


• Observation: BGMM keeps obtaining a worse result.

4. Experimentation New Physics processes (BSM)

- After selecting the best model \rightarrow training with a BSM process
- Physics process: *stop_02* (New Physics)
- Selected models:
 - β -VAE without BGMM ($\beta = 0.001$)
 - α -VAE without BGMM ($\alpha = 0.2$)
- We did not test models with BGMM \rightarrow lack of time

4.4. New Physics Results ($\beta = 0.001, \alpha = 0.2$)



• *Observation:* Similar results, α -VAE adjusts better in some cases

CONCLUSIONS

4. Conclusions

- Achieved objectives: more efficient event generation
- 2 models with promising results: β -VAE and α -VAE without BGMM
 - We should keep adjusting model parameters to improve results
- BGMM does not obtain the expected results
 - ¿Requires more components?
 - It will be required to perform additional experimentation

4.1. Future work

- Generating events in a fast way is a need of critical importance
 - Further research is required
- Proposals
 - Experiment the use of more components in BGMMs
 - Creation of advanced metrics
 - Usage of other types of models: GAN, *Flow models*...

Use of deep learning generative models for Monte Carlo event simulation in the context of LHC experiments

Raúl Balanzá García *Cotutors:* Jon Ander Gómez Adrián, José Francisco Salt Cairols, Roberto Ruiz de Austri Bazan

3rd Workshop on Compact Objects, Gravitational Waves and Deep Learning University of Minho

Full text: https://files.raulbalanza.me/pdf/memoria_tfg.pdf