



## Production and Testing of the LHCb Outer Tracker Front End Readout Electronics

#### Eduard Simioni, NIKHEF

#### On Behalf of the LHCb OT group

NIKHEF, National Institut of high energy physics: Amsterdam, The Netherland Physikalisches Institut: Heidelberg, Germany Henryk Niewodniczanski Institute of Nuclear Physics: Cracow, Poland Andrzej Soltan Institute for Nuclear Studies: Warsaw, Poland Tsinghua University: Beijing, China







- LHCb and the Outer Tracker sub-detector
- FE Electronics Overview
- Quality Assurance
- Commissioning of the FE-Box
- Summary



### **The LHCb Detector**







## **The LHCb Outer Tracker**





**3 OT Stations T1,T2,T3, modular design.** 

Each OT Station consists of 4 planes XUVX.

**B-Field vertical, (measure x-coordinate)** 

qU,V = ± 5°



Along the Beam pipe (1%): High-flux region (Vertex, trigger and inner tracker)

Remaining Area (99%): straw drift-tubes (Outer Tracker)



## **Basic OT Unit: the module**







- A straw tube,  $(5mm \emptyset)$ , is wound from two layers of foil material, (carbon-doped kapton and aluminum).
- Gold plated tungsten wires ( $25 \text{ mm } \emptyset$ ).
- Gas mixture Ar/CO2 in ratio 70/30
- Two mono-layers of 64 straw tubes each
- Two sandwich panels to support the straw tubes
- Two side walls to seal the gas box



#### Extremely Light-Weight Structure (crucial for tracking!)

- □ Total weight in sensitive area: 6.8 kg
- □ Total radiation length X/X<sub>0</sub>: 0.37%



## **OT FE Electronics Overview**





- Amplify analog signals from anode wires (ASDBLR board)
- Digital conversion (ASDBLR board)
- Drift Time measurement (OTIS board)
- Data optical link and services (GOL board)



## **OT FE Electronics Overview**



MASS PRODUCTION: 500 GOL/AUX Boards 2.000 OTIS TDC Boards 4.000 ASDBLR Boards 2.000 HV Boards

Front end box (full size):

128 channels

16 ASDBLR chips

- 4 OTIS TDC chips
- 1 optical link: 1.6 Gbit/s





## **Quality Assurance**



• HV board :

**Visual Inspection of bare PCB (alignment holes)** 

Thickness measurement of the bare PCB

Leackage and capacitance long term burn-test in a hoven

• ASDBLR board :

ASDBLR ICs Selection (~40% used  $\Rightarrow$  single Thr sub-detector!)

Visual inspection of the input/output connectors

- OTIS Board :
  - **OTIS ICs selection**

**Visual Inspection of bare PCB** 

Visual inspection of the input/output connectors

Bonding and test (before and after globtop)

• GOL Board :

**Dedicated Setup for GOL board-testing** 

• FE-Chassis

**Mechanical and electrical check** 

All test informations collected in a DataBase (important to track back problems)

**TWEPP 2007, Prague** 





#### **FE-Setup for commissioning of a completed FE-Boxes**

#### Test of global functionality of FE-Boxes, requirements:

- Analog input signal injection (mimiking the straw-like signal)
- Generation of ECS & TFC
- Data Acquisition (Fiber  $\Rightarrow$  Disk)
- High time accuracy (~0.15 ns)

#### Threshold Scan

ASDBLR TestPulses (high and low) Input delay Scan Signal amplitude Scan L0 (latency scan) Ect...



TWEPP 2007, Prague

# **THCD** Functional blocks of the FE-Setup







## **Standard Test sequence**



• Threshold characteristics :

Amplitude Scan with input signal  $\Rightarrow V_{thr}^{50\%}$ , noise, cross-talk etc...Thr Scan with input signal $\Rightarrow V_{thr}^{50\%}$ , noise, cross-talk etc...Thr Scan with Test-Pulse Low $\Rightarrow V_{thr}^{50\%}$ , noise, cross-talk etc...Thr Scan with Test Pulse High $\Rightarrow Q_{thr}^{50\%}$ , noise, cross-talk etc...

• Noise :

- Thr Scan with no input signal
- Timing :
  - **Drift-time spectra of all channels**
  - Delay scan over the full time range
- L0 scan :
  - L0 Delay Scan in steps of 1/2 BX
- Analysis

**Control histograms automatically generated for all tests** 

## **Threshold Characteristics**





#### For a Gaussian Noise Distribution

$$Pr[V_{thr}, Q_{i}] = \int_{V_{thr}}^{+\infty} f[V] dV = N \int_{V_{thr}}^{+\infty} e^{-\frac{1}{2} \frac{(V - g[Q_{i}])^{2}}{(s_{noise})^{2}}} dV$$
$$Pr[V_{thr}, Q_{i}] = \frac{1}{2} - \frac{1}{2} Erf[\frac{V_{thr} - g[Q_{i}]}{\sqrt{2} s_{noise}}]$$

TWEPP 2007, Prague

LHCh



#### **Threshold Characteristics**



$$Pr[V_{thr}, Q_i] = \frac{1}{2} - \frac{1}{2} Erf[\frac{V_{thr} - g[Q_i]}{\sqrt{2} s_{noise}}]$$



**Threshold Characteristics** 



# Measure the hit efficiency profile for each channel, fit errf model to data and determine $V_{thr}^{[50\%]}$ and $\sigma_{noise}$







#### **Correct for Charge Offsets**





#### **Powerful Check:**

• Large deviating or broken channels found: due to missing component, shorts on the connectors, bad chip soldering ect...

Amazing uniformity (we gonna use one threshold for all the discriminators)



#### **Amplitude Scan**



- Fixed threshold of ~800 mV, Burst length of 2000 events
- $Pr[V_{thr}, Q_i] = \frac{1}{2} + \frac{1}{2} Erf[\frac{Q_i Q_{thr}}{\sqrt{2} \text{ ENC}}]$

- Fit error function to data points for <u>each channel</u>
  - Half-Efficiency Amplitude
    Width (σ)
    Chi2 (χ2)
- Q<sub>thr</sub> Global Uniformity
- **ENC** Direct measurement of Equivalent Noise Charge (fC)





## **Input Charge Delay Scan**



 Fixed threshold of ~800 mV, Fixed charge of ~6 fC Burst length of 2000 events

•Fit linear function to data points for <u>each channel</u>

- Reject if:
  - Offset deviant from other channels.
  - Large χ2/Bad data





#### **Time Resolution**



Average result over 50 FE Boxes:

1.27 ± 0.16 TDC channels

i.e.:

0.496 ± 0.062 ns

(includes contribution of input-pulse timing resolution, etc.)













TWEPP 2007, Prague









TWEPP 2007, Prague





- Boards production&test completed in June 2007
- FE Production at NIKHEF of the LHCb Outer Tracker electronics is currently at Regime:
  - ~210 / (~50%) FE-Boxes assembled and tested
  - 36 FE-Boxes installed and tested in situ
- Excellent and compact test-of-performance of the Read-Out achieved using the FE-Tester Setup (important in the R&D phase)
- Electronics partially installed on the Outer-Tracker: used for a first commissioning of the electronics chain (straw  $\Rightarrow$  Counting room)

• A FE-Setup will be kept in the LHCb pit for FE-Testing and hardware debugging



## **Additional Slides**



TWEPP 2007, Prague



#### **HV Board Test**









Test for: Capacitance Leakage Current

#### **Settings**

- 48 hours
- 2000 Volt
- 70° C



TWEPP 2007, Prague



## **ASDBLR ICs Selection**



| Cut | Test               | Losses | Survivors (%) |
|-----|--------------------|--------|---------------|
| T1  | Input Resistance   | 1738   | 94.10         |
| T2  | Supply Current (P) | 2015   | 87.26         |
| Т3  | Supply Current (N) | 102    | 86.91         |
| T4  | BLR Monitor        | 46     | 86.75         |
| Т5  | Diode Voltage      | 119    | 86.35         |
| Т6  | Input Current      | 272    | 85.43         |
| T7  | Output Current     | 131    | 84.98         |
| T8  | Output Switch      | 2678   | 75.89         |
| Т9  | Broken Channels    | 4023   | 62.23         |

| Cut   | Test            | Losses | Survivors (%) |
|-------|-----------------|--------|---------------|
| T1-T9 | Pre-Selection   | 11124  | 62.23         |
| T10   | Half Efficiency | 5690   | 42.90         |

TWEPP 2007, Prague



## **ASDBLR ICs Selection**





#### **Deviation Parameter**

$$\Delta V_{\rm thr}^{[50\%]}[j] = 1/8 \sum_{j} V_{\rm thr}^{[50\%]}[j] - V_{\rm thr}^{[50\%]}[j]$$

#### **Max Deviation Parameter**

$$\Delta \mathbf{V_{thr}}^{\max} = \mathbf{Max_{j \in \{1;8\}}} \{ \Delta \mathbf{V_{thr}}^{[50\%]}[j] \}$$

#### **Performed:**

- \* For each chip
- \* Foreach Charge injected

#### TWEPP 2007, Prague



## **OTIS Bare PCB inspections**





TWEPP 2007, Prague



## **OTIS ICs Selection**



- Test procedure for each chip:
  - power consumption ok? (I < 300mA@2.5V)
  - Slow control test: Check position ID and registers
  - FPGA test:
    - Chip alive?
    - Header ok?
    - All channels alive?
    - Measurement of DNL for channel 0, 15, 16, 31
    - (DNL < 2.0 bins for OTIS 1.2 and
    - DNL < 1.9 bins for OTIS 1.3,
    - typical values: 0.5 bins< DNL < 1.5 bins)
    - Buffer overflow recognized?
  - DAC's functional?

TWEPP 2007, Prague



## **OTIS Board Bonding and Test**





Solid silver-filled epoxy glue Ultrasonic Soldering (~16 gr/wire) Semi-Automatic procedure (~120 s) Visual Inspection (1-2% repaired)



TWEPP 2007, Prague



## **OTIS Board Bonding and Test**



- I2C test (test of the OTIS register)
- ADC Test (Set the ASDDAC of the OTIS and measuring the output voltage)
- **ID Odd** (check if the data set is received correctly)
- L0 Reset (Check the data receiver)
- Event ID distributions (Flatness distribution with random trigger)
- Header Bits (Comparison with standard default header)
- Event count Reset (Check of the number of triggers received)
- Power Up Reset (Check the DAC register)
- Id Even (Check if the data set is received correctly)
- Hit Map Odd/Even (Check of the number of valid hits)



#### **Amplitude Scan**

lf,





$$g(Q_{in}) = V_{off} + G \bullet Q_{in}$$

#### Then,

$$Pr[V_{thr}, Q_i] = \frac{1}{2} + \frac{1}{2} Erf[\frac{Q_i - Q_{thr}}{\sqrt{2} \text{ ENC}}]$$

#### Where,

$$\mathbf{Q}_{thr} = \frac{\mathbf{V}_{thr} - \mathbf{V}_{off}}{\mathbf{G}}$$

- **Q**<sub>thr</sub> Global Uniformity
- **ENC** Direct measurement of Equivalent Noise Charge (fC)

TWEPP 2007, Prague