Test Results
on the n-XYTER,
a self triggered,
sparcifying readout ASIC

Christian J. Schmidt et al.,
GSI Darmstadt

TWEPP 2007, Prague, Sept. 3. – 7.
n-XYTER: DETNI Neutron Detector Readout ASIC

Neutron - X, Y, Time and Energy ... Readout

128+1 asynchronous analogue inputs

at 32 MHz total average input rate

AMS CMOS 0.35µ with thick metal four

n-XYTER was developed for neutron applications within EU FP-6 NMI3

8 LVDS output lines at 4 x 32MHz:

- time stamp, channel no.
- 1 differential, analogue output

250 dies shared between DETNI and CBM collaboration

TWEPP 2007, Prague Sept. 3. – 7.
n-XYTER: Novel FE-Chip Architecture Cast in Silicon

Architectural Solution for FAIR CBM and PANDA. Starting point towards the development of the dedicated XYTER front-end ASIC for several FAIR applications.

detector readout ASIC for high-density and high statistical rate time and amplitude measurement

- 128 channels @ 50.7 \(\mu \) pitch
- freely running,
 self triggered autonomous hit detection
- 850 (1000) ENC at 30 pF
- dynamic range for 6 MIPs (300\(\mu \) Si)
- positive and negative signals

- Per channel analogue energy and digital time stamp FIFO (1ns resolution)
- De-randomizing, sparsifying Token Ring readout at 32 MHz
Channel layout overview, Clock Domains and Power

analogue domain
no clock

total of 4 nF on chip MIM caps

analogue front end, PDH
comp – TWC trim reg
analogue mem.

PDH reset
comp

memory control (9 bit)

digital domain
system clock

time stamp
fast clock

digital
monosynch control

mask reg.
token cell
ch. ID
digital mem.
TS latch

clock tree

A/D guard ring
digital BULK
digital GND
digital VDD

PAD
Input MOS GND
analogue GND & BULK
analogue VDD
comparator VDD

A/D guard ring
digital BULK
digital GND
digital VDD

8 mm

5 mm

TWEPP 2007, Prague Sept. 3. – 7.
Data Driven Front-End: Asynchronous Channel Trigger

detection of statistical, poisson distributed signals

Asynchronous registry and storage in 4-level fifo guarantees data loss < 4 % when read-out through token ring

The DETNI ASIC 1.0, a front-end evaluation chip in AMS 0.35µ
Analogue Signal Sequence (Test Channel)

Testpulse Release

Slow Shaper

Fast Shaper

Discriminator Output

TWEPP 2007, Prague Sept. 3. – 7.
Tests on n-XYTER

- 64/128 chan. connected
- I²C-Interface
- Test points accessible
- All functional tests possible
- Analogue evaluation possible

One additional analogue test channel available for direct access of slow and fast shaper outputs... with output buffer would have been even more useful
16 mask registers with a mask bit for every channel

14 front-end adjustment registers for setting voltages and bias currents in the analogue part of the chip

2 configuration/status registers

2 diagnostic counters: token lost and fifo-overflow

2 test-delay registers (very useful for id. of pickup-paths etc.)

1 shift register 129 bytes deep for
 - local channel threshold trimming (bit 0 to 4) and
 - individual selectable analogue channel shutdown (bit 5)

3 delay registers for LSB time-stamp generation and tuning
Analogue Pulses, Peaking Time, Front-End Noise

<table>
<thead>
<tr>
<th></th>
<th>FAST channel</th>
<th>SLOW channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC</td>
<td>26.9 e/pF + 200 e</td>
<td>12.7 e/pF + 233 e</td>
</tr>
<tr>
<td>peaking time(^a) (1% to 99%)</td>
<td>18.5 ns</td>
<td>139 ns</td>
</tr>
</tbody>
</table>

Engineered for 30 pF, giving \((850)\) 1000 e 600 e

pre-amp and shaper power consumption: 12.8 mW per channel; OK for neutrons!

TWEPP 2007, Prague Sept. 3. – 7.
Analogue Setup Registers Tested

example pre-amp feedback biasing

Expected (simulation):
range: 0.928 – 1.651 V

Measurement:
range: 0.880 – 1.655 V

Access to DACs via several current mirrors only. They introduce INL and shifts.
Analogue Setup Registers Analyzed and Mapped-out

Fast Shaper
DC Level (V)

VbiasF

TWEPP 2007, Prague Sept. 3. – 7.
Slow Shaper Output, the Energy Channel

Measurements on the test channel #129

varying input capacitance

varying input charge

TWEPP 2007, Prague Sept. 3. – 7.
Testability and Diagnostics
- Individual analogue test channel
- Built in test pulse generator
- Programmable mask for every channel
- Programmable, forced trigger of PDH for every channel (check signal pedestal)
- Programmable dead time
- Diagnostic counters for pile-up and token statistics

Backup Previsions / Safety
- Every individual channel may be shut off
- Clock signals derived on chip may be fed in separately
- Time stamp clock may be reduced without change of readout clock
- Override of on chip band-gap reference foreseen
- Various parts may be shut off
- In addition to global threshold, 5 bit programmable local threshold
Token Ring Readout Process

token cell
control logic for data readout or token pass

skip channels without data, asynchronously rush through empty channels until data found

- Focus bandwidth where there is data
- 32 MHz data readout
- Automatic zero suppression (sparsification)
Token Ring Architectural Pros/Cons

- High Efficiency
 - Empty channels automatically skipped in readout process
 - Built-in fair distribution of readout bandwidth, automatic bandwidth focussing
- Built-in De-Randomization: 100% bandwidth used on data
- Error Robustness
 - Any problematic channel (e.g. continuously firering) will divert and occupy a maximum of 1/nth of the bandwidth.
 - Built-in, non-perfect readout probability avoids unrecoverable logic deadlock: Problematic situations like any kind of pile-up, logic hang-ups or glitch cause mere deadtime but the “show will go on”.

But: Data needs to be tagged with a time-stamp
Data needs to be resorted and re-bunched after readout

TWEPP 2007, Prague Sept. 3. – 7.
Digital output of the n-XYTER

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DV1</td>
<td>TS13</td>
<td>TS12</td>
<td>TS11</td>
<td>TS10</td>
<td>TS9</td>
<td>TS8</td>
<td>TS7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>TS6</td>
<td>TS5</td>
<td>TS4</td>
<td>TS3</td>
<td>TS2</td>
<td>TS1</td>
<td>TS0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>ID6</td>
<td>ID5</td>
<td>ID4</td>
<td>ID3</td>
<td>ID2</td>
<td>ID1</td>
<td>ID0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PileUp</td>
<td>OverF</td>
<td>Parity</td>
</tr>
</tbody>
</table>

No Valid Data Pattern

DataValid Marker
Token Ring Readout, Data Transmission

Four Data Elements Transmitted Ch 1, 8, 30, 82

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DV¹</td>
<td>TS13</td>
<td>TS12</td>
<td>TS11</td>
<td>TS10</td>
<td>TS9</td>
<td>TS8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>TS6</td>
<td>TS5</td>
<td>TS4</td>
<td>TS3</td>
<td>TS2</td>
<td>TS1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>ID6</td>
<td>ID5</td>
<td>ID4</td>
<td>ID3</td>
<td>ID2</td>
<td>ID1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PileUp</td>
<td>OverF</td>
</tr>
</tbody>
</table>

TS grey coded
Ch# grey coded

data transfer tested at 35 MHz, will also work at 128 MHz

TWEPP 2007, Prague Sept. 3. – 7.
Analogue Differential Output, the Energy Channel

Three signals, one signal altered

Signal settling upon successive data

TWEPP 2007, Prague Sept. 3. – 7.
Power Consumption

- Preamplifier: 7.4 mW
- Fast shaper: 2.5 mW
- Slow shaper stage 1: 1.7 mW
- Slow shaper stage 2: 2.5 mW
- Discriminator: 2.1 mW
- Peak detector and hold: 2.7 mW
- Analogue FIFO: 2.3 mW

Overall we find about 21 mW/channel
Some Inter-Channel Pick-Up, Ongoing Detective Work

- System Effect
- No dependence upon no. of bond wires, power or gnd
- May be worsened with discriminator settings (TWC)
- So far the effect could not be simulated!

TWEPP 2007, Prague Sept. 3. – 7.
Some In-Channel Discriminator Feedback Detected

...upon removal of discriminator-power decoupling

correlates with trigger

These issues are particularly important with the self triggered architecture! They will be addressed even more in the next engineering run.
Investigating Individual Channels, Trigger Efficiency

Trigger efficiency in Threshold Scan: The S-Curves

- Input of test pulses at fixed rate,
- scan threshold while measuring detection rate

Derivative gives image of noise!
Trigger efficiency tested for all channels

origin of 2 ch periodicity attributed to four fold pulser circuitry

note bonded and non-bonded channels
Summary of Testing Status, Further Steps

- Chip is fully functional: front-end, time-stamping, data transfer, slow control, test features, analogue and digital FIFOs, analogue output
- No severe flaws surfaced!

Further testing:
- Connect to silicon strips, and see real signals
- Test of performance at higher clock frequencies (go from 50 MHz to 256MHz)
- System investigation: Homogeneity of the chip

Outlook:
- Preparation of engineering run started (H. K. Soltveit, Heidelberg).
- Submission envisioned early 2008. Cost for the bag of chips: ~100 kEuro

Additional minor modifications for this engineering run:
- cut on power where easily possible
- expand dynamic range from 20 fC (6 MIPs) to 40 or 50fC.
- address system issues for homogeneity and temp. co.
- reduce in-channel spurious feedback
Near to mid term future – go prototyping

Generic n-XYTER architecture finds broad applications within FAIR: Silicon Strips, High Rate GEM TPC as well as large area gas detectors

Dedicated FAIR XYTER development initiated: work out specifications for FAIR Applications

- Front-end S/N and bandwidth \rightarrow power needs
- Radiation hardness
- Analogue pulse height resolution and dynamics
- Integration of modern, low power ADC on chip \rightarrow pure digital interface

Meanwhile: n – XYTER will serve as the prototype for a data driven, self triggered readout ASIC in FAIR detector prototyping

- CBM STS prototype integration with readout electronics,... module prototyping
- Daq chain development
- Employment in a PANDA GEM TPC prototype (need 1000 chips).
- Prototype beam tests

TWEPP 2007, Prague Sept. 3. – 7.
Modelling FIFO Occupancy

Poisson Distribution(λ):
e.g.: fifo depth $n = 4$, so expect 4 events during readout if incoming rate equals maximum readout rate. $\Rightarrow \lambda = 4$.

FIFO can virtually be filled with up to $2*n$ events with no data loss since n elements are read while data comes in.
Time Stamp Clock is Operative!

averaged signals show: time stamp does change
n-XYTER Front-End Topology

CHARGE
PRE-AMPLIFIER

Mf
Md

Cf=100fF

M1

Rd=4kΩ

3000/0.35

INTERNAL VOLTAGE REFERENCE
ADJUSTABLE VOLTAGE REFERENCE

FAST SHAPER

8kΩ
550Ω
V_POL,1

to Comparator

6.3pF
750Ω
V_POL,2

SLOW SHAPER

18kΩ
4kΩ
4.2pF

CM

12kΩ

To Peak Detector

4kΩ

18kΩ

TWEPP 2007, Prague Sept. 3. – 7.