

Electronics and Sensor Study with the OKI SOI process

TWEPP-07, Sep. 5, 2007 Yasuo Arai (KEK)

KEK Detector Technology Project : [SOIPIX Group, http://rd.kek.jp/project/soi/]

Y. Arai, Y. Ikegami, Y. Unno, T. Tsuboyama, S. Terada, M. Hazumi, T. Kohriki, H. Ikeda^A,

K. Hara^B, H. Ishino^C, H. Miyake^B, K. Hanagaki^D,

G. Varner^E, E. Martin^E, H. Tajima^F,

Y. Hayashi^G, M. Ohno^G, K. Fukuda^G, H. Komatsubara^G, J. Ida^G

KEK, JAXA^A, U. Tsukuba^B, TIT^C, Osaka Univ.^D, U. Hawaii^E, SLAC^F,

OKI Elec. Ind. Co.^G,

OUTLINE

- SOI Device History of SOI Features of FD-SOI
- SOI Pixel Detector
 Progress of SOI Pixel R&D
 FY05 MPW Results
 TCAD Simulations
- FY06 MPW Run
 Preliminary Results
- Summary

OUTLINE

- SOI Device History of SOI Features of FD-SOI
- SOI Pixel Detector
 Progress of SOI Pixel R&D
 FY05 MPW Results
 TCAD Simulations
- FY06 MPW Run
 Preliminary Results
- Summary

History of SOI (Silicon-On-Insulator)

First Planar IC (1959 R. Noyce)

Most ICs are built on Bulk Si substrate. Each transistor is isolated by reversebiased p-n junction

Bulk Si Technology

J. E. Lilienfeld (Poland, 1882-1963)

Transistor is built on a thin Si Film supported by an Insulating Substrate.

(Prototype of SOI)

Unfortunately, No Evidence that this device was build and worked.

Bulk and SOI Wafer

Bulk Wafer

SOI Wafer

First SOI Wafer for Integrated Circuit

SIMOX (Separation by Implanted Oxygen) K. Izumi (NTT Japan, 1978)

<u>UNIBOND[™] Process (1995, France LETI)</u> -> SOITEC

- 🚺 Initial silicon wafers A & B
- Oxidation of wafer A to create insulating layer
- Smart Cut ion implantation induces formation of an in-depth weakened layer
- Cleaning & bonding wafer A to the handle substrate, wafer B
- Smart Cut cleavage at the mean ion penetration depth splits off wafer A
- Over the second seco
- Split-off wafer A is recycled, becoming the new wafer A or B

Bulk CMOS vs. SOI CMOS

In SOI, Each Device is completely isolated by Oxide.

PD-SOI vs. FD-SOI

FD-SOI has advantage in performance under very low voltage operation.

Copyright 2007 Oki Electric Industry Co.,Ltd

FD-SOI Structure

Copyright 2007 Oki Electric Industry Co.,Ltd

Current Status of PD-SOI and FD-SOI

- PD-SOI (Partially Depleted) High-speed microprocessors
 - IBM: PowerPC , mainframe CPU's, Wii(Nintendo), Xbox
 - Free scale: PowerPC
 - AMD: Athlon processors
 - Sony (with IBM and Toshiba) : Cell, PS3

FD-SOI (Fully Depleted)

Low-power application

- Oki: solar cell watch, long-wave RF decoder

Technology Node option beyond 32nm, Next 3D Tr. (R&D)

- Intel, many major companies

At present, only Oki has an experience of mass production of FD-SOI

13

FD-SOI LSI Products for Consumer Market

07.9.5 TWEPP-07 Yasuo Arai

1.0mm²

FD-SOI UV Sensor

✓ UV selective without external filters
 ✓ On chip analog / digital circuits
 ✓ Very high uniformity

Principal Schema

3.5mm 0.1 Ultra Violet Visible 0.08 UV-A UV-B 0.06 0.04 0.02 0 280 320 360 400 480 520 560 440 Wave Length (nm)

4.0mm

Spectral of FD-SOI Photo-Diode

Copyright 2007 Oki Electric Industry Co.,Ltd

Features of (FD-)SOI

- Full Dielectric Isolation :
 Latchup Free, Small Area, Good Circuit Isolation No Back Bias Effect
- Low Junction Capacitance :
 High Speed
- Steep Subthreshold Slope
 Low Power
- No Kink Effect
 Good for Analog Desugn
- Less Impurity in Body
 Good Vth Matching,
 Less 1/f Noise

No Well junction, Thin Film : *Low Leak, Low Vth Shift (High Temp).*Small Active Volume : *High Soft Error Immunity*TID compensation by Back Bias

Latchup Free Structure

SOI CMOS

(Ref. 'SOI Technology' by Jean-Pierre Colinge, Springer)

No Parasitic PNPN Structure

Area reduction by SOI

I solation between Analog and Digital Part

10-40dB lower than Well isolation of Bulk, when High-Resistive Substrate is used

Bulk

SOI

Smaller Junction CapacitanceBulkSOI

Cj is 1/10 of Bulk technology. Gate Capacitance is 30-40% Lower.

High Speed / Low Power

Copyright 2007 Oki Electric Industry Co.,Ltd

Steep Sub Threshold Slope

Lower Threshold (Leakage Current) is possible without increasing Leakage Current (Vth).

Kink Effect on PD-SOI and FD-SOI

Small Temperature Dependence

due to less change in depletion width

No latchup, Less leakage, Less Vth shift

FD-SOI can be operated in more than 300 C.

High Soft Error Immunity

Bulk Device

SOI Device

Higher soft error immunity due to ultra thin body Silicon.

Total I onizing Dose

OKI 0.15um FD-SOI

Moderate TID Immunity (enough for space applications). Charge trapped in BOX shifts Vth.

<u>TID(2)</u>

Leak Current and V_{Th} resumes to nearly original value by biasing back side even in 100Mrad.

(ו.ש.ש ואיבו ו-טו ומשעט הומו

Summary of this section

 FD-SOI technology has many attractive features: Latchup Free, Radiation Hardness, High Temperature Operation, Low Power, ...
 for use in High Energy and Space applications.

but the substrate Si is a simple physical structure

OUTLINE

- SOI Device History of SOI
 Features of FD-SOI
- SOI Pixel Detector
 Progress of SOI Pixel R&D
 FY05 MPW Results
 TCAD Simulations
- FY06 MPW Run
 Preliminary Results
- Summary

Progress of SOI Pixel R&D

Many people are seeking an ideal pixel detector

High-R Semiconductor Sensor with Fully Integrated Amp. and R/O logic using Commercially Available Technology

SOI Monolitic Detector!

Pioneering work by SUCIMA

Technology is not so advanced (~ $3\mu m$ technology at Lab.).

07.9.5 TWEPP-07 Yasuo Arai

KEK SOIPIX R&D History

- '05.5: Propose SOI Pixel R&D to KEK Detector Technology Project (Generic R&D).
 - 7: Start Collaboration with OKI Elec. Co. Ltd. for SOI detector R&D .
 - 10: 1st TEG submissions in OKI MPW (Multi Project Wafer) run with *O.15μm* technology.
- '06.3: Processes of the 1st TEG were finished.
 - 4-8: Good response to Light and β -ray was confirmed.
 - 12: 2nd TEG Submissions hosted by KEK with 17 designs.
- '07.4 : Process of the 2nd TEG was finished.

Features of SOI Monolithic Pixel detector

- Bonded Wafer (High Resistive Substrate + Low Resistive Top Si).
- Standard CMOS Electronics (NMOS, PMOS, MIM Cap etc.).
- Monolithic Detector, No Bump Bonds (Lower cost, Thin Device).
- High density (Smaller Pixel Size is possible).
- Small capacitance of the sense node (High gain V=Q/C)
- Industrial standard technology (Cost benefit and Scalability)

SOI Pixel Process

Process	0.15μm Fully-Depleted SOI CMOS process, 1 Poly, 5 Metal layers (OKI Electric Industry Co. Ltd.).
SOI wafer	Wafer Diameter: 150 mm ϕ , Top Si : Cz, ~18 Ω -cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz、 700 Ω -cm (<i>n-type</i>), 650 μ m thick (SOITEC)
Backside	Thinned to 350 μ m, and plated with AI (200 nm).

SOI Pixel Process Flow

Metal contact & p+ implant

07.9.5 TWEPP-07 Yasuo Arai

Copyright 2007 Oki Electric Industry Co.,Ltd

Pixel Layout

2.5 x 2.5 mm²

Laser I mage

<u>β-ray (90Sr) Signal</u>

32x32 image view with 670nm Laser and plastic mask

Vdet = 10 V, Exposure Time = 7 ms

p+ Guard for I/O Buffer

It is hard to re-design I/O buffers, so we just surround the buffer with p+ ring.

p+ ring = 0V 10MHz Clock

July 18, 2007

Signal Coupling Simulation

Circuit activity during measurement may affect sensor signal due to coupling through the BOX.

TCAD(Enexss) Simulation

Potential

Electric Field

Signal Coupling (cont.)

- Pulses in SOI circuit can generate nonnegligible amount of charge to the sensor.
- Need further simulations in more realistic geometry.

- Differential signal can reduce the effect.
- Use Double Gate/FIN SOI Tr?
- Use some guard structure?

SOI Device Structure Road Map

Summary of this section

- Processes for implanting p+/n+ to substrate and creating contacts are established with 0.15 μm technology.
- We could demonstrate the first SOI Pixel detects light and β -rays.
- SOI specific issues become apparent.
 - Back gate effect
 - Circuit to Sensor coupling
- TCAD simulation is powerful to study these effects.

OUTLINE

- SOI Device History of SOI Features of FD-SOI
- SOI Pixel Detector
 Progress of SOI Pixel R&D
 FY05 MPW Results
 TCAD Simulations
- FY06 MPW Run
 Preliminary Results :
 FNAL, LBL, U. of Hawaii, KEK
- Summary

FY06 MPW Run

17 designs were submitted on Dec. 5, 2006

2.4 x 2.4 mm² --- 10 chips 5.0 x 5.0 mm² --- 6 chips 10.2 x 10.2mm² --- 1 chip

Some Preliminary Results are presented. (still under evaluation)

Top Cell Name	Chip size	Affiliation
VARPIXEL	2.4 mm	Osaka Univ.
ΤΟΡΡΙΧΝ	2.4 mm	KEK
OKI0612	2.4 mm	Tokyo Univ.
Achip	2.4 mm	LBL
OKI_TOP	2.4 mm	FNAL(BNL)
ATEG	2.4 mm	JAXA/ISAS
BTEG	2.4 mm	JAXA/ISAS
CTEG	2.4 mm	JAXA/ISAS
isas_set0612	2.4 mm	JAXA/ISAS
RADFET1	2.4 mm	KEK
HawaiiNSUBSTRATE	5.0 mm	U. of Hawaii
detectorPOLY	5.0 mm	KEK
TOP_PIXELSTRIP	5.0 mm	KEK
TOP_8PREAMP	5.0 mm	KEK
TOPTEG2	5.0 mm	KEK
ΤΟΡΙΝΤΡΙΧ	5.0 mm	KEK
TOPCOUNT	10.2 mm	KEK

applications

• imaging detector for direct detection in electron microscopy (TEM), and soft X-rays, design:

- **>>** test prototype 64x64 pixels, pitch 26 μ m, 4 parallel diodes /pixel (distance ~13 μ m),
- ▶ each pixel: CSA, CR-RC² shaper, discriminator + 12 bit binary counter,
- **b** counter reconfigurable to shift register readout serial (caterpillar) through all pixels. 26 μ m

07.9.5 TWEPP-07 Yasuo Arai

FNAL: MAMBO

G. Deptuch

tests:

performed till now: measurements on test structures

- analog channel with charge injection by pulse generator OK,
- counter/shift register OK, (proper operation requires back-gate voltage above certain level ~5V due to conflicting leakage of NMOS and PMOS transistors in OFF state)

 discriminator OK, acquisition of full scale images is underway!

Gain significantly lower and shaping much faster – seems to be understood;

07.9.5 TWEPP-07 Yasuo Arai

FNAL: MAMBO

lesson learnt:

- >> transistors in Silicon on Insulator technology are basically 5 terminal devices;
 - there is mutual interaction between transistors and the substrate (used as detector);
 - in fully depleted (FD) SOI, substrate plays role of a second gate with gate oxide thickness equal to the thickness of buried oxide (200nm);

▶ measurements of low V_T and high V_T NMOS transistors I_D(V_{GS}):

shift in threshold voltage !!! floating body and body tied to source transistors are affected in the same degree

hints:

- important is to use dense matrix of p⁺ implants to lower potential at the surface;
- use rather low back-gate (generally it is enough V_{BACK} =10V to deplete 50 µm of Si)
- good for electron microscopy, high energy physics, etc.

still more to learn

07.9.5 TWEPP-07 Yasuo Arai

LBNL SOI Test Chip 12/06

LBNL Pixel

FFFFFF

Cooling studies

• 4 analog sectors with 1.0 V and 1.8 V, 1 μm and 5 μm diodes

Decrease of CDS pedestal level with cooling temperature consistent with leakage current behavior

Transistor test: back-gating effect

- Single test transistor characteristics measured for different substrate biases
- Threshold shift for increasing substrate bias due to back-gating
- <u>Preliminary</u> results from irradiation with 30 MeV protons up to 2.5e12 p/cm²: thresholds unchanged w/o substrate bias, but increased effect of back-gating due to charge trapping in buried oxide: characteristics degraded already for V_{sub}=5 V

<u>Univ. of Hawaii:</u> <u>Continuous Acquisition Pixel</u> (CAP) Family

- \bullet The area corresponds to 3250 x 1500 $\mu m^2.$
- Pixel size occupies 28.7 x 32.5 μ m².
- The number of columns is 108 and rows is 44.

E. Martin, G. Varner

become better, and reached to ~130V.

Micro Discharges are observed with infrared camera

Corner of the bias ring

07.9.5 TWEPP-07 Yasuo Arai

KEK : Integration Type Pixel (INTPLX)

- 20 μm x 20 μm pixel (same as FY05 design)
- •128 x 128 pixels
- 5x 5 mm² chip

2006 I mage

2007 I mage

FY07 Submission Plan

- Next submission at the end of November (~Dec.).
- Due to OKI process movement, we will use 0.2 μ m process at the next run.

	0.15 μm	0.2 μm
Wafer Diameter	6 inches	8 inches
Core (I/O) Voltage	1.0V (1.8V)	1.8V (1.8/3.3V)
Gate Length	0.14 μm	0.2 μm
Gate Oxide Thickness	2.5/5 nm	4.5/7 nm
BOX Thickness	200 nm	200 nm
loff	<100pA/µm	<0.1pA/µm

Space is still available !

Summary

- SOI device has many interesting features to use in HEP and Space applications.
- We confirmed the basic operation of SOI pixel detector with OKI 0.15 μm FD-SOI technology.
- At the Second MPW run(FY06), we submitted our own MPW run with 17 designs including US and Japan Univ./Labs.
- We are planning the Third MPW run in Nov.-Dec. with 0.2 μm technology
- We welcome more people to join to use this interesting technology.