The Alice Time Projection Chamber ...

... a Technological Challange in the LHC Heavy Ion Physics

Luciano Musa (CERN)

The ALICE Time Projection Chamber

Outline

- General condition at LHC for heavy ion collisions
- The TPC in the ALICE Detector
- Challenges at high particle density
- TPC Main Components
 - Field Cage
 - Readout Chambers
 - Electronics
- Commissioning the full TPC
- Summary and Outlook

Luciano Musa – CERN

The ALICE TPC Collaboration

Bergen CERN Darmstadt TU GSI Darmstadt Heidelberg PI Lund Bratislava Copenhagen Frankfurt Heidelberg KIP Krakow

03 September 2007

General Conditions at LHC for Heavy-Ion Collisions

ALICE, a general purpose Experiment

- measures hadrons, leptons and photons at mid-rapidity
- Pb Pb: 5.5 TeV CM-energy (NN)
- pp, pA, A-A

Luminosity (max)

- Pb + Pb: $1.0 \cdot 10^{27} \text{ [cm}^{-2} \text{ s}^{-1]}$ p + p: $5.0 \cdot 10^{30} \text{ [cm}^{-2} \text{ s}^{-1]}$
 - 8 kHz interaction rate
 - event (central) rate 100 200 Hz

Rapidity density predictions

- dN_{ch} / dy = 2000 6000 (model dependent)
- What can we learn from RHIC? •
- The first LHC event will give an answer ٠

« The biggest step in energy of the history of heavy-ion collisions » G. Rolland

- 200 kHz interaction rate
- event rate > 1 kHz

 $dN/dy \approx 3500$ at η = 0

"educated" extrapolation (saturation model, Eskola et al.)

ALICE Detector designed for dN_{ch} / dy = 8000

The ALICE Detector

TPC Overview

03 September 2007

Challenges at high particle multiplicities

TPC WORKING PRINCIPLE

Challenges at high particle multiplicities

Can a TPC be safely operated at this high particle multiplicities and high luminosity ?

- stability of readout chambers and field cage at high load
- ageing problems

Can we measure with enough accuracy (tracking efficiency, p & dE/dx resolution)?

• Cluster pile-up

High granularity \Rightarrow High data volume Low diffusion gas (CO₂) \Rightarrow low drift velocity \Rightarrow high drift field (100KV)

- Space charge problems (drift field distortions)
 Low Z gas (Ne) ⇒ little primary ionization ⇒ high gas gain (2×10⁴)
- Drift vel. depends sensitively on <u>temp</u>., HV, gas composition
- Gas gain depends sensitively on mixture

Challenges at high particle multiplicities

Can we handle the detector data throughput?

- 557 568 (pads) × 1000 (time bins)
- 712 Mbytes / event
- Pb Pb (@200 Hz) → 142 Gbyte / sec
- p-p (@1KHz) → 710 GByte / sec
- ⇒ data compression in FEE
- ⇒ accurate signal preprocessing in FEE

Low mass Field Cage

Readout Chambers - Design Considerations

- Z (time direction): higher sampling rate limitations:
 - signal/noise gets critical
 - temporal signal is <u>diffusion limited</u>

⇒oversampling

• R-\pad direction): smaller pads

limitations:

- # of channels (cost!)
- HV-GND gets critical
- PRF is <u>diffusion limited</u>

⇒oversampling

Conclusion

 choose the time/pad area which yields still reasonable signal (S/N > 20)

- for a given pad area optimize aspect ratio
- minimize diffusion: "<u>cold gas</u>", use <u>high drift field</u>

03 September 2007

Readout Chambers

- In total 557,568 pads
- 63 rows with 4 x 7.5 mm² (inner radius)
- 64 rows with 6 x 10 mm²
- 32 rows with 6 x 15 mm² (outer radius)

The Ion-Tail Problem

Ionization from ⁸³Kr Decay Measured with ALICE TPC prototype)

03 September 2007

The Ion-Tail Problem

Aliroot data convoluted with measured signal

03 September 2007

TPC FEE OVERVIEW

<u>Pre-Amplifier Shaping Amplifier (PASA)</u>

Production Engineering Data		
Process	AMS CMOS 0.35 μm	
Area	18 mm²	
Yield	95%	
Parameter	Requirement	Production
Noise	< 1000e	560e (12pF)
Conversion gain	12mV / fC	12mV / fC
Shaping time	190ns	188ns
Non linearity	< 1%	0.2%
Crosstalk	<0.3%	< 0.1%
Power	< 20mW	11mW / ch

ALTRO Block Diagram

ALTRO layout and production data

ALICE TPC ReadOut chip (ALTRO)

Front End Card: Layout, Cooling and Mounting

Installation of last Readout Chamber (Summer '05)

Installation of Front End Electronics (Feb-May '06)

03 September 2007

Commissioning the TPC

Only two sectors can be instrumented at a time with

- Low Voltage Power Supplies
- Cooling

Commissioning objectives

Each pair of sectors continuously operated over 48 hours

- Test functionality of all components
- gas stability, noise, signal tails, gain homogeneity, space resolution, etc.

TPC pre-commissioning (2006); some results - Noise measurements

r.m.s. of the pedestals (s_{NOISE}) is below 1 ADC count as required in the Technical Design Report

First cosmic rays events

03 September 2007

First cosmic rays events

27

First cosmic rays events

High occupancy shower induced by cosmic rays

03 September 2007

Tail cancellation and baseline restoration

ALTRO Signal Processing

High Multiplicity cosmic rays

03 September 2007

cluster width - diffusion coefficient (1/2)

width (σ of a gaussian fit) of the charge signal in the longitudinal coordinate Z (drift direction) as function of Z (cut on inclination angle tan(ϕ) <0.05)

Signal attenuation - electron attachment

Position resolution

A space point resolution in Y direction as function of z position (cut on inclination angle $tan(\phi) < 0.05$)

B space point resolution in Y direction as function of z position (cut on inclination angle $tan(\phi) < 0.05$)

Laser system for the TPC

Laser tracks in the TPC

03 September 2007

Descend to the cavern (Jan '07)

03 September 2007

TPC in the cavern floor

Ready to go inside the spaceframe (Jan '07)

Inside the Space-frame (May '07)

Summary

- The largest TPC ever built will be at the hart of the ALICE Experiment to study the ultra-relativistic collision of heavy ions
- High optimization of all components and some innovative aspects
- Commissioning, two sectors at a time, with cosmic and laser tracks since June '06
- Preliminary results show many features achieve the expected performance:
 - Gas pressure: excellent stability!
 - Noise < 1000 e
 - Signal well separated from noise ("S/N" > 30 for MIP)
 - Space point resolution ~ 1mm after 2.5m of drift
- Jan Mar '07: installation underground in the ALICE Detector

• Nov - '07: start commissioning of full TPC in its final position in ALICE

Back-up Slides

LHC: The closest approximation of the Big Bang

How to Measure in a High Track Density?

TPC WORKING PRINCIPLE

Field Cage - Construction

03 September 2007

Field Cage - Construction

- Suspended Al-mylar strips
- Streched Al-mylar central electrode
- Endplates to hold ROCs
- Mechanical precision 200mm

03 September 2007

How to Measure in a High Track Density?

The ALICE Event Display

Projection of the drift volume into the pad plane $dN_{ch} / dy = 8000 \Rightarrow 2x10^4$ charged particles

Projection of a slice (2° in \theta)

How to Measure in a High Track Density?

TPC OCCUPANCY^(*) IN THE PAD-TIME SPACE

- INNERMOST PAD ROW: 50% (*)Occupancy = N_{ABOVE} / N_{ALL}
- OUTERMOST PAD ROW:17%
- AVERAGE OCCUPANCY:25%

CLUSTER AT THE INNERMOST PAD ROW OF THE TPC

Architecture and Main Components

Each of the 36 TPC Sectors is served by 6 Readout Partitions

<u>Pre-Amplifier Shaping Amplifier (PASA)</u>

Impulse Response Function

ALTRO PERFORMANCE

03 September 2007

Baseline Correction I

Tail Cancellation Filter

• Functions

- signal (ion) tail suppression
- pulse narrowing \Rightarrow improves cluster separation
- gain equalization

• Architecture

- 3rd order IIR filter
- 18-bit fixed point 2'sC arithmetic
- single channel configuration ⇒ 6 coefficients / channel

Baseline Correction 2

Tail cancellation and baseline restoration

cluster width - diffusion coefficient (2/2)

width (σ of a gaussian fit) of the charge signal in r- ϕ direction (pad row) as function of Z (cut on inclination angle tan(ϕ) <0.05)

Laser tracks in the TPC

03 September 2007