

Overview

- The ATLAS Pixel Detector
 - Readout units
 - Parameters to be controlled
- Detector Control System Hardware
- 10% Setup at CERN
 - Structure of the detector control software and gained experience:
 - FIT: Front-end Integration Tool
 - SIT: System Integration Tool
 - FSM: Finite State Machine
 - DB: Data Base Interfaces
 - DDC: DAQ (Data Acquisition) DCS (Detector control system) Communication
 - Summary and Outlook

The ATLAS Pixel Detector

- 1744 detector modules
- 3 layers in the barrel (consist of staves)
- 3 disks on each end (consist of sectors)
- 80 million readout channels (~90% ATLAS)
- main task: vertexreconstruction
- 3 space points for |η|<2.5
 - Optical communication used for command and data transfer

05.09.2007

 6 / 7 modules per half-stave or sector building a Readout Unit

HV (< 700 V) Vdda (~1.7 V) Vdd (~2.1 V) Temperature

05.09.2007

DCS Hardware

05.09.2007

DCS Hardware: Modules

Wiener:

 Low voltage for analog and digital circuits of the modules

LV-PP4:

 Distribution and measurement of currents

Regulator Station:

- Adopt and regulate voltages inside the detector volume
- Individual switching
- measurement

ISEG:

sensor bias voltage

DCS Hardware: Optoboard

- Supply and Control for the Opto Link (SC-OLink):
 - Vvdc: 0..10 V, 800mA
 - Vpin: 0..20 V, 20 mA
 - Viset: 0..5V, 20 mA
 - RST_Opto
- Regulator Station:
 - Voltage adoption and regulation for Vvdc inside detector volume
 - switching
 - Voltage and current measurement

DCS Hardware: Environment

DCS Hardware: Interlock System

A 10% Setup

- At CERN a test setup was built to operate 10% of the final detector components in parallel.
- Setup was used over more than 8 months (incl. system extensions).
 - System-test to check compatibility of final components
 - Stepwise connectivity test of the full pixel detector
- All DCS components have been integrated into this setup.
- The control mechanism for the setup was identical to what will be used in the final detector.

FIT: Front-end Integration Tool

Integration, control and monitoring of the DCS hardware

- Central management and administration of the hardware instances
- Creates data structure reflecting the different hardware
- Measurement of parameters of the hardware
- Offers special GUIs for administration and error handling

FIT: Experience

- 3 FITs exist:
 - Wiener power supplies
 - Iseg power supplies
 - ELMB (embedded local monitoring board)
 - Serving: BBIM, SC-Olink, Regulators, TBOC, and LV_PP4
- All DCS hardware can be integrated and managed for the complete system by the FITs
- The tools work safe and reliably
- The FITs have been used in the 10% setup intensively to integrate the hardware control into the DCS software package without problems. All hardware access is handled by the FIT.

SIT: System Integration Tool

05.09.2007

SIT: Experience

- Virtual cabling of the detector inside the control software
 - The SIT loads the connectivity from the database which was frequently required during the connectivity tests and worked reliably
 - The data structure generated by the FIT (hardware data) is managed using "Aliases" (avoids data copies)
- The SIT offers GUIs where the user can monitor the different detector parts (and not the different power supplies, temperature sensors, etc.)
- The detector like structure of the aliases is the basis for the FSM (as control instance) and for the communication between the DAQ system and DCS (DDC).

FSM: Finite State Machine

- To build an FSM one needs:
 - Objects
 - States
 - Commands
- Implementation of the hierarchical structure of the detector
 - Summarizes and evaluates the status of the detector
 - Allows for partitioning
 - Clear depiction
 - Simple handling
- STATEs used for the 10% setup:

RUNNING READY/ON NOT_READY OFF UNKNOWN

FSM: Structure

.

PCC4

Module6

Command

Control Units (CU) as dividing element Broken down into D1A D2A D3A D1C D2C D3C Layer0 Layer1 Layer2 a detector like structure CU contain PCC26 PCC1 PCC1 furthers CUs or **Device Units** ReadoutUnit1 RU2 RU3 RU4 RU1 RU2 (DU)**Control Units:** state is generated OptoB OptoB from states of Module1 Module1 children

Module7

Command

Pixel Detector

Device Units: state is generated from values

05.09.2007

FSM: Experience

ReadOut group: D1A_B04_S2								
D1A_B04_S2	JNKNOWN A	M1	M2	M3	M4	M5	M6	
COMMAND	DLE OK 🖲	-11.2 °C	-11.2 °C	-11.1 °C	-11.1 °C	-11.1 °C	-11.1 °C	
		0.0 V 0.0000 mA						
WIENER VDD ON OK	7.00 V 0.84 A	2.103 V 0.778 A	0.000 V 0.006 A	0.000 V 0.006 A	0.000 V 0.006 A	0.000 V 0.005 A	0.000 V 0.006 A	
MENER VDDA ON OK	7.99 V 1.21 A	1.694 V 1.237 A	0.000 V 0.007 A	0.000 V 0.009 A	0.000 V 0.008 A	0.000 V 0.008 A	0.000 V 0.008 A	
Opto Board	0.06 V 0.06 mA	M1	M2	M3	M4	M5	M6	
UNKNOWN ALARM	6.00 V 514.9 mA 2.497 V 1392.000 A	RUNNING OK	OFF OK	OFF OK	OFF OK	OFF OK	OFF OK	
	31.0 °C	·						

- The CPU load caused by the FSM was acceptable
- Experience in hardware control was gained (i.e. order of device switching): Device Unit "command" was introduced for this
- guarantees well-defined procedure
 - Avoids dangerous states of detector (Readout Group)
 - Avoids confusing situations for the operators

05.09.2007

DB: Overview

- Oracle databases
- Used for connectivity data and for logging measured data
- Connectivity data is extracted using PHP program
- DCS measures values periodically and stores them into the PVSS DB
- These values are filtered into the offline DB (COOL) and can be accessed using a PVSS Data Viewer directly

DB: Data Viewer

- General purpose PVSS Data Viewer for displaying of condition data has been developed
- Extracts data
- Display and analysis
- Export in various formats
- Can access online and offline DB

Motivation:

- DAQ needs to send commands to the DCS FSM
- Tuning procedures for the optical link need interaction between DAQ and DCS
- As communication protocol DDC provided by ATLAS TDAQ is used

DDC: Overview

05.09.2007

DDC: Experience

- DDC realized the command transfer from DAQ to the DCS-FSM in the 10% setup successfully
- Optolink tuning and monitoring worked using DDC
- DDC on DCS side is capable of receiving 4000 commands per second

05.09.2007

Summary

- The Detector Control System hardware and software were tested intensively in a 10% setup over more than 8 months
- FIT and SIT were proven to be solid tools for managing the hardware
- FSM was built according to the setup needs. It was intensively used by the shift crews. Useful experience for the FSM in ATLAS was gained
- Interfaces to the conditions and connectivity DB are close to the final versions and a Data Viewer has been developed
- DDC makes FSM commands and therefore detector operation available on DAQ side. Tuning algorithms for the optical link work using DDC.

Outlook

- Experience gained in 10% test finds its way into the design of the final system
- Hardware installation is to be finished
- FSM adoption to detector needs and structure is ongoing
- DDC performance studies for complete system have to prove the capabilities of this protocol for the final detector