The ATLAS Level-1 Central Trigger

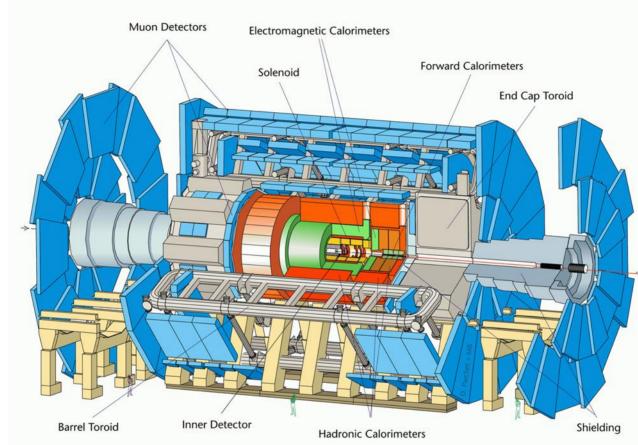
<u>R. Spiwoks¹</u>, S. Ask², D. Berge¹, D. Caracinha^{1,3}, N. Ellis¹,

- P. Farthouat¹, P. Gallno¹, S. Haas¹, P. Klofver¹, A. Krasznahorhay^{1,4},
- A. Messina¹, C. Ohm¹, T. Pauly¹, M. Perantoni⁵,
- H. Pessoa Lima Jr.⁵, G. Schuler¹, J. M. de Seixas⁵, T. Wengler²
- ¹⁾ CERN, Switzerland
- ²⁾ University of Manchester, UK
- ³⁾ University of Lisbon, Portugal
- ⁴⁾ University of Debrecen, Hungary
- ⁵⁾ Federal University of Rio de Janeiro, Brazil

Outline

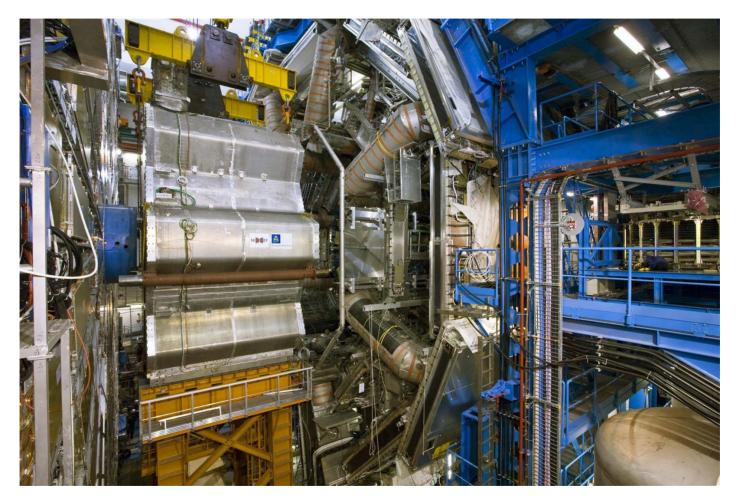
Introduction

• Level-1 Central Trigger:

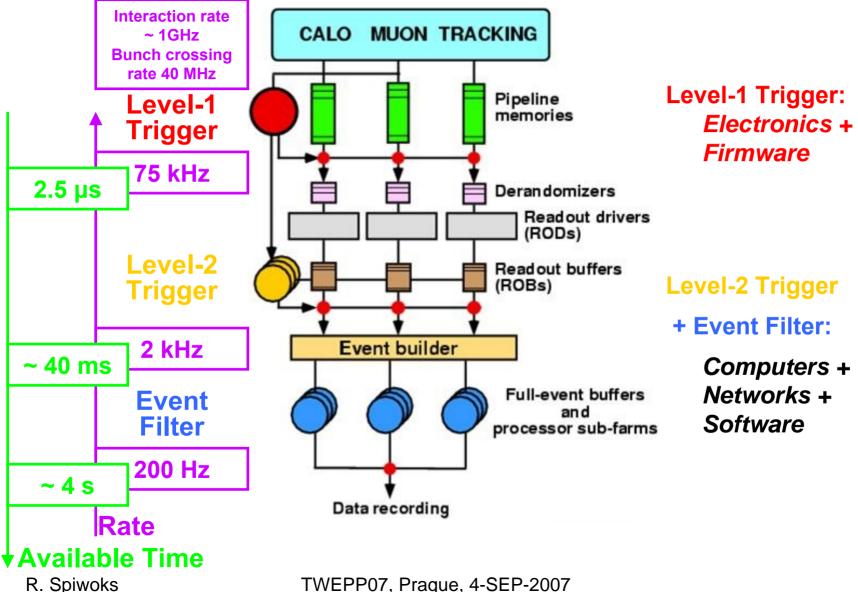

- Muon-to-Central Trigger Processor Interface (MUCTPI)
- Central Trigger Processor (CTP)
- Local Trigger Processor (LTP) and Local Trigger Processor Interface Module (LTPIM)

• Commissioning & Results:

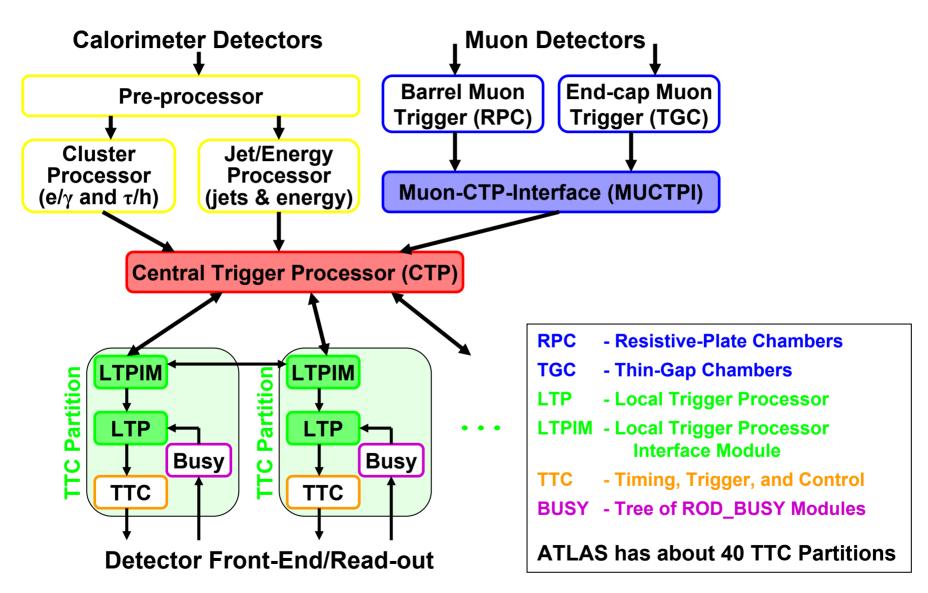
- Setup
- Software
- Results


• Summary

ATLAS (1)


General-purpose Experiment at CERN's Large Hadron Collider (LHC): Proton-proton collisions at 14 TeV centre-of-mass energy About 25 collisions per bunch crossing (BC) every 25 ns (40 MHz) ⇒ Interaction rate of 1 GHz

ATLAS (2)



Installation of the 2nd end-cap toroid magnet in July 2007

Trigger/DAQ System

Level-1 Trigger System

MUCTPI (1)

Functionality:

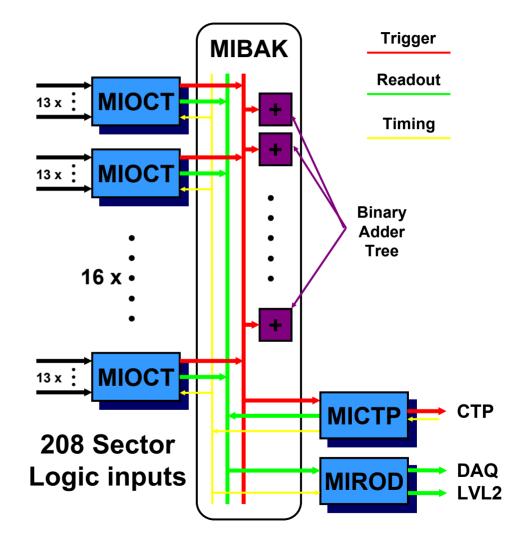
- Receive all muon candidates from 208 trigger sectors and calculate multiplicities for 6 programmable p_T thresholds (results sent to CTP)
- Resolve cases where a single muon traverses more than one sector
 - \Rightarrow avoid double counting
- Send summary information to Level-2 and to DAQ
 ⇒ identify regions of interest for Level-2 trigger processing
- Take snapshot of incoming sector data (diagnostics); accumulate rates of incoming muon candidates (monitoring)

MUCTPI (2)

MIOCT - Octant module

- Receive muon candidates from muon trigger sector logic
- Resolve overlaps

MIBAK - Backplane


- Multiplicity summing
- Readout data transfer
- Timing signal distribution

• MICTP - CTP interface

- Multiplicity output to CTP
- Trigger & timing signals

MIROD - Readout driver

 Send summary information to Level-2 and DAQ

MUCTPI (3)

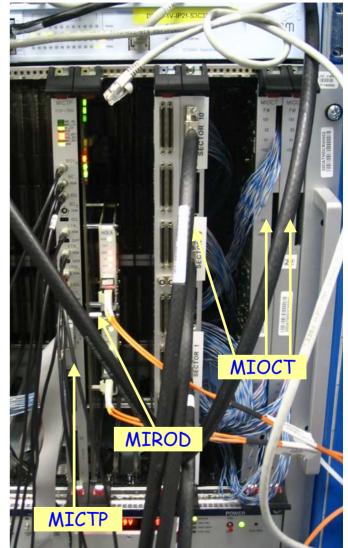
Prototype installed since 2005

- Provides almost full functionality
- Missing some flexibility in overlap handling (MIOCT)
- Being upgraded incrementally to the final system

• MIOCT:

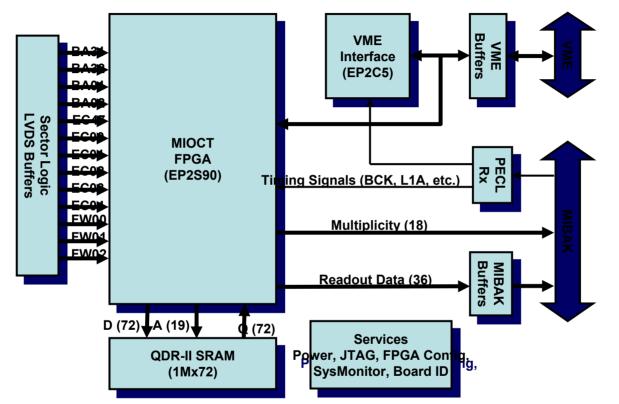
- Input module for one octant. Two old and one new MIOCTs installed
- Currently 10 muon sectors (out of 208) are connected

• MICTP:


 Timing distribution and trigger (muon multiplicities) output to CTP

• MIROD:

- Output to Level-2 and DAQ using an old version of S-Link readout link (ODIN)
- Will be replaced soon with ATLAS standard version of S-Link readout link (HOLA)


• MIBAK:

 Custom active backplane for multiplicity summation and readout

MUCTPI (4)

New MIOCT Design for more flexible overlap handling:

- Prototype has been tested and is being used in the experiment
- Final production (34 modules) expected for September 2007

\rightarrow See poster by S. Haas

MUCTPI (5)

New MIROD/CTP Design:

 Old MIROD was developed for old version of S-Link readout link (ODIN)

Can use newer ATLAS standard version of S-Link readout link (HOLA) with adapter card

But requires more space of an additional VMEbus slot space which in the final system will be occupied by a MIOCT module

 \Rightarrow New MIROD design with HOLA S-Link cards

More recent FPGA technology

 \Rightarrow Migrate original design into single FPGA

• Same PCB as for MICTP

 \Rightarrow Additional spare modules for MICTP

\Rightarrow Prototype is being built

\rightarrow See poster by S. Haas

CTP (1)

Functionality:

- Receive, synchronize, and align trigger inputs from calorimeter and muon trigger and others
- Generate Level-1 Accept (L1A) according to programmable trigger menu
- Additional functionality:
 - Generate trigger-type word accompanying every L1A
 - Generate preventive dead-time in order to prevent front-end buffers from overflowing
 - Generate summary information for Level-2 and DAQ
 - Generate a precise absolute time stamp (GPS, 5 ns)
 - Generate additional timing signals (ECR)
- Take snap shot of incoming trigger inputs (diagnostics); accumulate rates of incoming trigger inputs and generated trigger combinations (monitoring)

CTP (2)

Trigger

Calibration

LHC СТРМІ COM bus (common) Receive timing signals from LHC **CTPIN** 4 x 31: **PIT bus CTPIN** 4 x 31: (Pattern In Time) 4 x 31: **CTPIN CTPMON** DAQ CTPCORE LVL2 CTPOUT 5 x LTP CTPOUT 5 x LTP CTPOUT 5 x LTP CTPOUT 5 x LTP CAL bus CTPCAL 28 (Calibration **Requests**)

CTPMI - Machine interface

- **CTPIN Input module** ۲
 - Receive trigger input signals
 - Synchronize and align signals

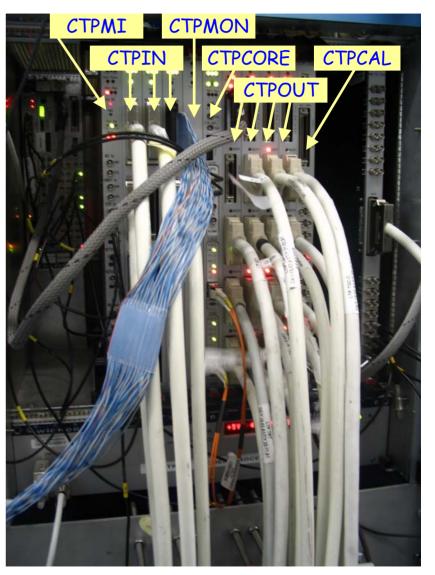
CTPMON - Monitoring module •

Bunch-per-bunch monitoring

CTPCORE - Core module

- Form Level-1 Accept (L1A)
- Send summary information to — Level-2 and DAQ

CTPOUT - Output module •


- Send timing signals to LTPs
- Receive calibration requests

CTPCAL - Calibration module

- Time-multiplex calibration requests
- **Receive front-panel inputs**

CTP (3)

- Final system installed since 2006
- CTPMI:
 - Clock and orbit input
- 3 × CTPINs
 - For up to 12 trigger input cables
- CTPMON:
 - Monitoring of trigger input on bunch-perbunch basis
- CTPCORE:
 - Trigger decision according to trigger menu
- 4 × CTPOUTs:
 - For up to 20 outputs to sub-detectors
- CTPCAL:
 - Time-multiplexing of calibration requests
 - Additional individual trigger signals
- NIM-to-LVDS fan-in module
 - Additional individual trigger signals

CTP (4)

• Production problems overcome:

 Problems with FPAG mounting on CTPIN and CTPCORE solved by remounting, all modules are working correctly

• Last module CTPCAL produced:

- Time-multiplexing of calibration requests from sub-detectors, received by CTPOUT and put on CTPCAL backplane
- 28 additional individual trigger inputs
- CTPCAL was tested, installed, and two spares produced

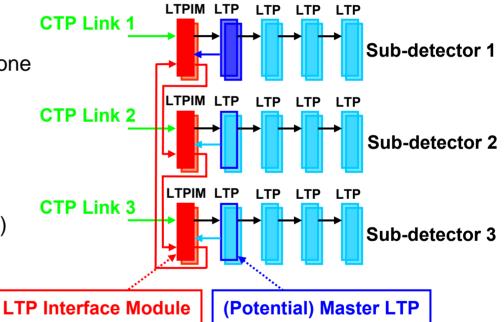
• Two more complete systems available

 in laboratory for spare and development (firmware modification and software development)

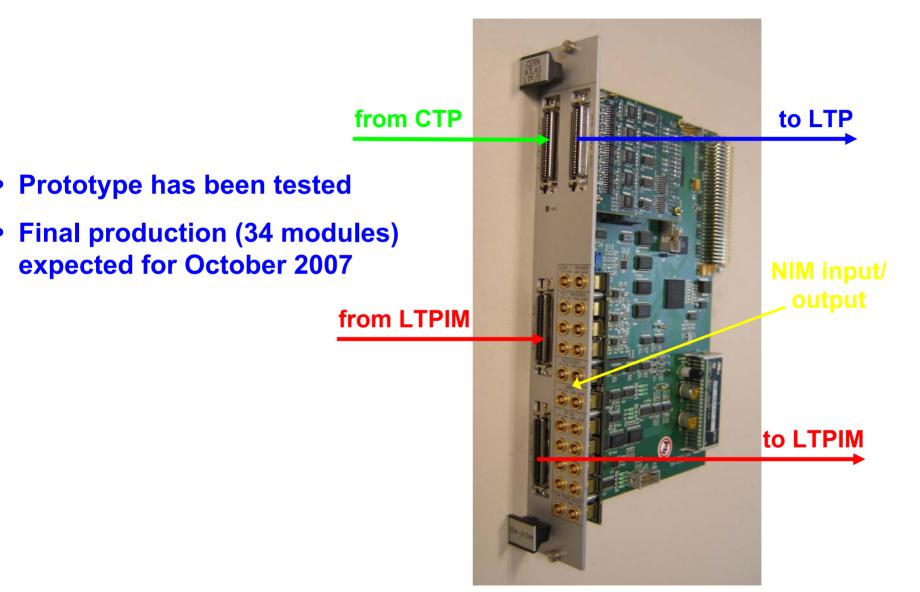
\Rightarrow CTP hardware is finished

software development is well advanced, including issues such as monitoring and the luminosity block mechanism

LTP + LTPIM (1)


Functionality:

• LTP:


- Connects to CTP
- Allows to daisy-chain several LTPs
- Replaces the CTP when in stand-alone mode: use local external signals or internal pattern generator

• LTPIM:

- "Switch module" for LTP signals
- 2 inputs (from CTP and from LTPIM)+ local input (NIM)
 - 2 outputs (to LTP and to LTPIM) + local output (NIM)
- Allows several combinations of sub-detectors to run and to change combinations without re-cabling, e.g. calorimeter and calorimeter trigger

LTP + LTPIM (2)

Commissioning (1)

• Program:

- Routine use:

- MUCTPI and CTP are routinely being used since more than one year to provide triggers to an increasing number of sub-detectors
- Mainly using muon triggers (barrel and end-cap) and CTP internal triggers; basic connection tests to calorimeter trigger have been performed
- Trigger and timing signals are provided to 14 sub-detectors

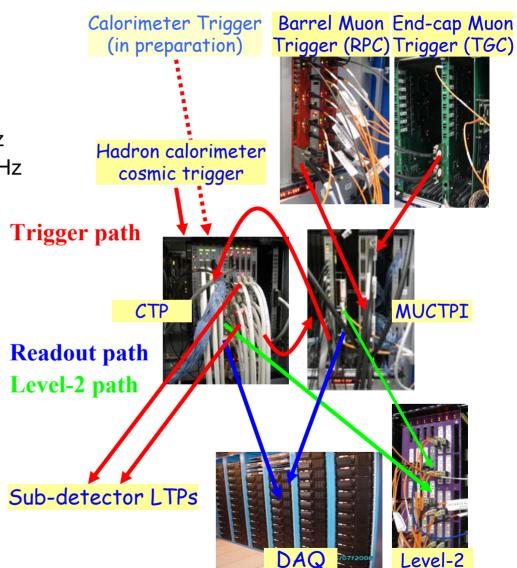
- Several milestone weeks during 2007:

"M4" week from 23 AUG - 3 SEP

Commissioning (2)

Experimental Setup:

• Trigger inputs:

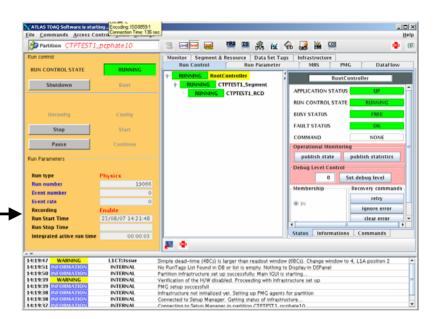

- Muon triggers to MUCTPI:
 - 4 × Barrel (RPC) sectors: 120 Hz
 - •6 × End-cap (TGC) sectors: ~ 1 Hz
- Temporary hadron calorimeter cosmic trigger (< 1 Hz)
- CTP internal triggers
- Calorimeter trigger in preparation

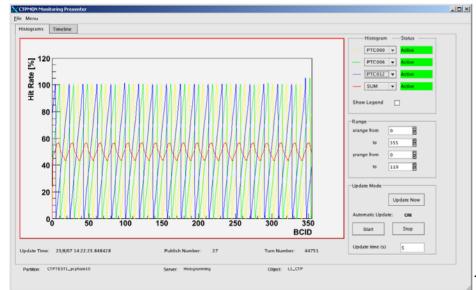
• Readout:

 Summary information of MUCTPI and CTP to Level-2 and DAQ

• Timing distribution:

 To almost all sub-detectors (via LTP, LTPIM in preparation)




Commissioning (3)

• Run control

+ configuration database

- "Plug-in" module for run control
- Schema in configuration database
- ATLAS graphical user interface

• Monitoring

- Input rates, bunch-per-bunch rates, combined trigger rates, BUSY status, etc.
- Bunch-per-bunch monitoring, thanks to

H. Schoorlemmer, summer student

Commissioning (4)

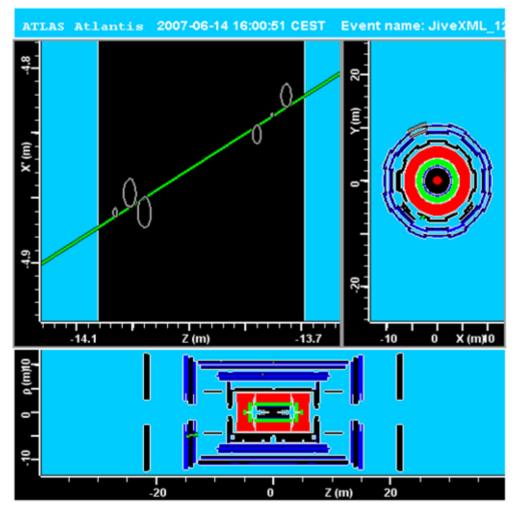
Trigger Configuration

• Trigger Database:

Stores **event selection strategy** (Level-1, Level-2, Event Filter), **Trigger Tool** is a Graphical User Interface to browse and edit all trigger menus

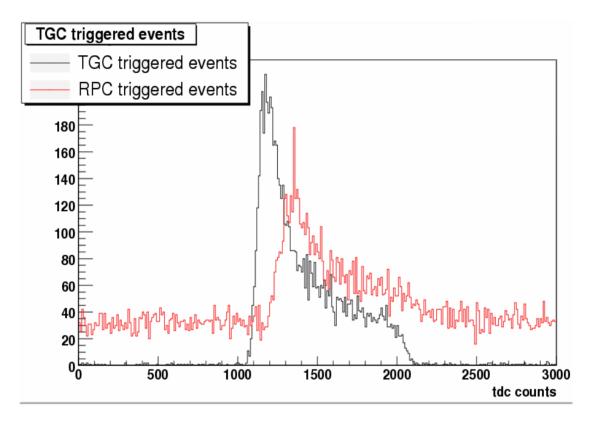
• Trigger Menu Compiler:

Automatic translation of **high-level description** of Level-1 trigger menu to all necessary **configuration files** of the CTP:


Input: XML (high-level description) *Output*: VHDL (Switch Matrix) + memory (LUT + CAM)

Configuration and memory files written by Trigger Menu Compiler

LUT - Look-up Table CAM - Content-Addressable Memory


Results (1)

Display of an event triggered by end-cap muon trigger with hits in muon precision chambers

R. Spiwoks

Results (2)

- Events triggered by both, end-cap and barrel muon trigger, have hits in the muon precision chambers with characteristic muon TDC spectrum
- Trigger from barrel muon trigger reaches the muon precision chamber front-end electronics 130 ns earlier trigger than from end-cap muon trigger

Summary

- Hardware is finished or about to be finished
 - New MIOCT: prototype tested, final production under way
 - New MIROD/CTP: prototype being built
 - LTPIM: prototype tested, final production under way
- Complete trigger and readout chain is being operated in the experiment using cosmic rays
- Effort is moving towards exploitation and operation
 - Work on online and offline software, e.g. monitoring