Inductor-based switching converter for low voltage power distribution in LHC upgrades

S. Michelis, F. Faccio, A. Marchioro – PH/ESE/ME
Working environment

- High magnetic field (up to 4T in CMS, 2T in ATLAS)

- High level of radiation will be reached inside the detectors:

 LHC doses probably increased x 5 – 10 so we can extrapolate to hundreds of Mrad in several Tracker location, decreasing to ten(s) in the outer Trackers
Present power distribution schemes in trackers

1A/channel (analog or digital), round-trip cables, and sense to nearest regulation
Possible solutions

Important considerations:
Magnetic field, Radiation and Material Budget, plus EMI if inductor-based DC/DC

Same cables as today can bring more power,
It requires efficient DC/DC on module for cooling

Small cables can bring all the power
It requires efficient DC/DC
DC-DC: Work in progress

- Aiming at demonstrating the feasibility of a fully integrated (except L and passive components) DC-DC buck converter

Vin = 12-24 V
Vout = 1.5-3 V
Iout = 1-2 A

Rad-hard technology
Selection of a technology

• Design and test of transistors of a 0.35 µm technology usually employed in automotive application

• Several different transistor topologies available for high-V applications (lateral, vertical)

• It needs to be radiation tolerant
The main radiation-induced problem for the NMOS is the source-drain leakage current due to the radiation-induced trapping of positive charges in the thick lateral oxide. It is necessary to modify the layout of the NMOS in order to make them radiation tolerant.
DC-DC: Work in progress

- Aiming at demonstrating the feasibility of a fully integrated (except L and passive components) DC-DC buck converter.

Vin=12-24 V
Vout=1.5-3V
Iout=1-2A
- Inductor: need of **air core inductor** because of high magnetic field for CMS (up to 4 T) and ATLAS (up to 2 T)

<table>
<thead>
<tr>
<th>Material</th>
<th>Initial Perm. μ_0</th>
<th>B_{max} (T)</th>
<th>Operating Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>250</td>
<td>2.2</td>
<td>60-1000 Hz</td>
</tr>
<tr>
<td>Si-Fe (unoriented)</td>
<td>400</td>
<td>2.0</td>
<td>60-1000 Hz</td>
</tr>
<tr>
<td>Si-Fe (oriented)</td>
<td>1500</td>
<td>2.0</td>
<td>60-1000 Hz</td>
</tr>
<tr>
<td>50-50 Ni Fe (grain-oriented)</td>
<td>2000</td>
<td>1.6</td>
<td>60-1000 Hz</td>
</tr>
<tr>
<td>AMORPHOUS Alloy B</td>
<td>3000</td>
<td>1.5-1.6</td>
<td>to 250 kHz</td>
</tr>
<tr>
<td>High Flux powder</td>
<td>14 to 160</td>
<td>1.5</td>
<td>10 kHz to 1 MHz</td>
</tr>
<tr>
<td>Kool Mu ® powder</td>
<td>26 to 125</td>
<td>1.0</td>
<td>to 10 MHz</td>
</tr>
<tr>
<td>Iron powder</td>
<td>5 to 80</td>
<td>1.0</td>
<td>100 kHz-100 MHz</td>
</tr>
<tr>
<td>79 Permalloy</td>
<td>12,000 to 100,000</td>
<td>8 to 1.1</td>
<td>1 kHz-75 kHz</td>
</tr>
<tr>
<td>AMORPHOUS Alloy E</td>
<td>20,000</td>
<td>0.5-0.65</td>
<td>to 250 kHz</td>
</tr>
<tr>
<td>Ferrite-MnZn</td>
<td>750 To 15,000</td>
<td>0.3 to 0.5</td>
<td>10 kHz-2 MHz</td>
</tr>
<tr>
<td>Ferrite-NiZn</td>
<td>10 to 1500</td>
<td>0.3 to 0.5</td>
<td>200 kHz-100 MHz</td>
</tr>
<tr>
<td>Permalloy powder</td>
<td>14 to 550</td>
<td>0.3</td>
<td>10 kHz-1 MHz</td>
</tr>
</tbody>
</table>
Inductors

Different commercial choices

Coilcraft

<table>
<thead>
<tr>
<th>Inductance (nH)</th>
<th>DCR max (mOhm)</th>
<th>Irms (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>50</td>
<td>2.5</td>
</tr>
<tr>
<td>538</td>
<td>90</td>
<td>2</td>
</tr>
</tbody>
</table>

Renco electronics

RL-1233
RL-1238, RL-1239
AIR CORE INDUCTORS
BOBBIN WOUND

<table>
<thead>
<tr>
<th>Inductance (nH)</th>
<th>DCR max (mOhm)</th>
<th>Irms (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>560</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1200</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Stefano Michelis
S. Michelis
Twepp07 – 6th September 2007
DC-DC: Work in progress

- Aiming at demonstrating the feasibility of a fully integrated (except L and passive components) DC-DC buck converter
Power losses

There are power losses in the circuit due to the non-ideal component.

Mainly there are three losses that it is necessary to consider:
1. on R_{on} and R_{ind}, parasitic resistances of the switch and inductor, respectively;
2. on charging the gate capacitance;
3. on the control circuit.
Efficiency vs I_{out} and W

with $V_{\text{in}}=24V$, $V_{\text{out}}=2.5V$, $R_{\text{ind}}=6m\Omega$ and $L=700nH$
NMOS design W=0.1m

G1

G2

SW1

SW2

4 mm²
NMOS irradiation tests – Threshold Voltage

Vth (linear)

![Graph showing NMOS Vth (linear) vs TID (rd)]

- MOS1: 3.3V
- MOS2: 3.3V
- MOS3: 3.3V

S. Michelis

Twepp07 – 6th September 2007
NMOS irradiation tests – Leakage Current

Leakage (sat)

Leakage (A)

Pre-Rad 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 Post-rad

TID (rd)

MOS1 3.3V

MOS2 3.3V

MOS3 3.3V

S. Michelis

Twepp07 – 6th September 2007
NMOS irradiation tests - R_{on}

![Graph showing Ron vs. TID (rd)]

- **MOS1** 3.3V
- **MOS2** 3.3V
- **MOS3** 3.3V

Pre-rad - Post-rad

S. Michelis

Twepp07 – 6th September 2007
Conclusions

We have demonstrated that:
1. the technology can be tolerant to TID up to at least 180Mrd and switch transistors of the required size can be integrated
2. Air core inductor can be used in such high DC magnetic field
3. efficiency above 80% is achievable

Evaluation of EMI is in progress
• choosing dedicate architecture and inductor shape
• making measures and trying to standardize the measurement process.