A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

Jean-François Genat

on behalf of

J. David², M. Dhellot², D. Fougeron,¹R. Hermel¹, J-F. Huppert², H. Lebbolo², R. Sefri², T.H. Pham², F. Rossel², A. Savoy-Navarro².

¹LAPP Annecy, ²LPNHE Paris

TWEPP Workshop, Sept. 3d-7th 2007 Prague

Outline

- Silicon strips data
- Goals in 130nm CMOS
- Present results
- Chip 2 and further tests
- Next chip

Silicon strips data at the ILC

 Pulse height: Cluster centroid to get a few μm position resolution 10cm-1m long strips, possibly strixels Shaping time of the order of the microsecond

Detector pulse analog sampling at 10-20MHz

Time: 150-300 ns for BC identification,

- Buffering: Occupancy implies a few events per strip 8-16 deep event buffer/strip
- Power cycling: 1 ms data taking at 5 Hz

Millions of channels: Integration of k-scale channels readout chips

Outline

- Silicon strips data
- Goals in 130nm CMOS and present Chips
- Present results
- Chip 2 and further tests
- Next chip

Goals and Status

. .

Full readout chain integration in a single chip including digitization

	This chip
- Preamp-shaper	yes
 Zero-suppression decision (threshold analog sums) 	yes
- Pulse sampling: Analog pipe-lines	yes
- On-chip digitization: ADC	yes
 Multi-event Buffering and pre-processing: 	no
Centroids, least squares fits	
 Lossless compression and error codes 	no
 Calibration and calibration management 	no
- Power switching (ILC timing)	no
	4 channels

Future:

CMOS 90nm	128 ch.	2008
512-1024 channels	planned	2009

Targeted numbers

- Amplifier:
- Shaper:
- Sparsifier:

30 mV/MIP gain 700ns-3 µs Threshold on analog sum auto-zero

- Sampler: 16-deep
- Event buffer 16-deep
- ADC: 10-bit, 10KHz
- Noise:

Measured with 180nm CMOS: 375 + 10.5 e-/pF @ 3 µs shaping, 210µW power

Front-end in 130nm

130nm CMOS:

- Smaller
- Faster
- Less power
- Will be (is) dominant in industry
- (More radiation tolerant)

Drawbacks:

- Reduced voltage swing (Electric field constant)
- Noise slightly increased (1/f)
- Leaks (gate/subthreshold channel)
- Design rules more constraining
- Models more complex, not always up to date

UMC CMOS Technology parameters

2006-7 Chips

130nm CMOS

Both under test Chip #1 (4 channels) - Preamp-shapers + Sparsifier - Pipeline 1 - ADC - Digital Chip #2 (One channel) - Preamp-shapers + Sparsifier - DC servo

- Pipeline 2 (improved)
- DAC
- Test structures: MOSFETS, passive

4-channel Chip

4-channel chip layout

4-channel 130nm Silicon

180nm 130nm

Layout of the 130nm chip including sampling and A/D conversion

Picture

Outline

- Silicon strips data
- Goals in CMOS 130nm and present chips
- Present results
- Chip 2 and further tests
- Next chip

Results Measured gain - linearities Preampli and Shaper's Linearity 1200 shaper output * - fited shaper output + Preampli output Preamp output fited preampli output 1000 Mode Acquisition 800 Echantillon - Jan Ja Détect. crête (< 250Me/s) Output(mV) Enveloppe 16 600 Moyenne 16 Ch2 20.0mVΩ%M 2.00μs A Ch4 J 112mV 400 **T** 50.00 % Réinit. retard Réglage auto. Mode Fréquence d'échantillonnage 500MEch/s horizont horizonta 200 Mode Acquisition Echantillon Détect. crête (< 250Me/s) 20 25 30 35 5 10 15 40 Input(MIPs) Enveloppe 16 Preamp and Shaper: Moyenne Gain = 29mV/MIP Ch1 20.0mV∿∿ M 2.00µs A Ch4 J 112mV Shaper output **T** 50.00 % Dynamic range = 20MIPs 1% Réinit Résol. Réglage auto. Mode Fréquence d'échantillonnage 500MEch/s horizont 30 MIPs 5% Peaking time = $0.8-2.5\mu s / 0.5-3\mu s$ expected

130nm vs 180nm chip noise results

Digitized analog pipeline output

Measured output of the ADC (pulser)

Waveform distorted due to 1pF parasitic capacitance of the output pad connected for analog diagnostics on 2 out of four channels

Traces cut using IFB to get all shaper channels operational to ADC for beam tests

Chip 2 includes a voltage buffer between shaper and ADC

Digitized analog pipeline output Laser response of detector + 130nm chip

From pulser

From Laser diode + Silicon detector

ADC first look ...

130nm Chip 2

LAPP Annecy le Vieux (R.Hermel, D. Fougeron)

One channel test version in 130nm including:

- Preamp + shaper
- Improved pipeline (output buffer)
- Calibration channel (calibration caps)
- Calibration DAC

Chips 2 presently under test

If OK, all analog blocks will be validated for a multi-channel version in 130nm aiming to read a real detector in 2008

130-1 chip's tests to come

- Lab tests: Measure ADC extensively
- Linearities Integral, differential
- Noise Fixed pattern, random
- Speed Maximum clock rate
- Accuracy Effective number of bits

- Next beam tests at CERN end October

Outline

- Silicon strips data
- Goals in CMOS 130nm
- Present results
- Chip 2 and further tests
- Next chip

130-2 tests under work (LAPP Annecy)

Measure improved pipeline extensively

Denis Fougeron's (LAPP) design

Linearities	
	Integral, differential
Noise	
	Pedestal fixed pattern, random noise
	Maximum clock rate
Droop	
	Hold data for 1 ms at the ILC

Outline

- Silicon strips data
- Goals in CMOS 130nm
- Present results
- Chip 2 and further tests
- Next chip

Chip 130nm-3

Equip a detector

- Experience from lab test bench (laser + source) and 2007 beam-test
- 128 channels with :
 - Preamp-shapers + sparsifier
 - Pipeline
 - ADC
 - Digital
 - Calibration
 - Power cycling

Power cycling

Switch the current sources between zero and a small fraction (10^{-2} to 10^{-3}) of their nominal values

This option switches the current source feeding both the preamplifier & shaper between 2 values:

Zero or a *small fraction* (0.1% - 1%) of biasing current is held during « power off ».

Zero-power option tested on 180nm chip

Planned Digital Front-End

- Chip control
- Buffer memory
- Processing for
 - Calibrations
 - Amplitude and time least squares estimation, centroids
 - Raw data lossless compression
- Tools
 - Cadence DSM Place and Route tool
 - Digital libraries in 130nm CMOS available
 - Synthesis from VHDL/Verilog
 - SRAM
 - Some IPs: PLLs

Need for a mixed-mode simulator

Some issues with 130nm design

- Noise likely modeled pessimistic, but measured quite acceptable
 90nm could be less noisy (Manghisoni, Perugia 2006)
- Lower power supplies voltages reducing dynamic range
- Design rules more constraining
- Some (via densities) not available under Cadence Calibre (Mentor) required.
- Low Vt transistors leaky (Low leakage option available at regular Vt)

Manageable, UMC design kits user friendly, Europractice very helpful.

130-90nm noise evaluation (STM process)

Noise and inversion region

Manghisoni et al FE2006 Perugia

At low drain current both devices work in the weak inversion region → channel thermal noise is roughly the same for both devices

- At high drain current, a significant difference in the channel thermal noise can be detected ← device from the 90 nm technology works closer to weak inversion region.
- Better 1/f noise performance provided by the STM 90 nm technology

VI International Meeting on Front-End Electronics, Perugia, May 18th 2006

Conclusion

These CMOS 130 designs and first test results demonstrate the feasibility of a highly integrated front-end for Silicon strips (or large pixels) with

- DC power under 500μ W/ch
- Silicon area under 100 x 500 μ^2 /ch

The End