
1

Current ROOT Math
a Current situation in ROOT:

`libCore :
⌧TMath
⌧TRandom (1,2,3)
⌧TComplex

` libMathCore:
⌧special functions (gamma, erf)
⌧probability density functions (pdf)
⌧some cumulative distribution functions (cdf)
⌧Physics and geometry Vectors
⌧Function interfaces and template functor classes

`libHist:
⌧derivation, root finder (1D), integration,

`libMathMore:
⌧numerical algorithms implemented with GSL
⌧interface classes for some numerical algorithm (integration)

1

2

Current ROOT Math Libraries

2

3

Proposal for a new libMath
a Have a new basic Math library with

`Math classes from base:
⌧TRandom classes, TComplex , TMath

• some functions needed by ROOT core classes are defined in TMathBase
and will stay in libCore

` all classes and interfaces from MathCore
⌧basic mathematical and statistical functions
⌧physics vector:

• 3D and LorentzVector
• Rotation and Boost classes

`numerical algorithms from TF1
⌧numerical derivation (TF1::Derivative, 2,3)
⌧numerical integration (TF1::Integral, TF1::IntegralMultiple)
⌧1D minimization and root finder (Brent method) used in

TF1::GetMinimum, TF1::GetX
⌧use a set of interfaces which can be re-implemented using GSL in

MathMore

3

4

Library Size
a Current initial estimate size of the library (on Linux slc3

gcc3.2.3)

a actual size probably slightly bigger
4

Classes/Functions size of Library (KB) size of Library and
Dictionary (KB)

TMath 109 240

TRandom, 1,2,3 55 150

TComplex 4 70

ROOT::Math functions 16 150

Physics Vector 116 ~2000

TF1 numerical algo. 15 30

Total for libMath 315 ~2600

5

libMath improvements
a Remove duplications TMath - ROOT::Math functions

`implement using code from CEPHES some of the mathematical
functions (incomplete beta and gamma)
⌧better implementation than current one based on Numerical Recipes

`have a consistent set of mathematical functions and distributions
⌧can be extended using MathMore to more sophisticated functions

• Legendere polynomial, Elliptic integral, etc...
a Improve TRandom classes

`better naming (remark made also in the internal review)
⌧use typedef’s for backward compatibility

`provide more type of random variates and implement some more
efficient algorithms
⌧additional Gaussian random variates, bi-Gaussian, Poisson, Binomial

`have Mersenne-Twister as default engine

5

6

Function interfaces
aMinimal function interfaces to be commonly used by the

numerical algorithms
`interfaces for functions in one and multi-dimensions
`distinguish parametric functions from general functions

6

7

Functor classes
a Functor classes to wrap any C++ callable object in a

function with the right interface
`free function
`member functions

a User does not need to provide as input a function with the
right type of interface.

a Example:

7

8

Modifications to TF1
a Ideal would be that TF1 contains inside a pointer to a

parametric function interface

a Have template constructor to create a TF1 from a :
`free C function like now
`an object pointer and a member function name

a use internally the Functor classes to create the fFunction
pointer.

8

9

Numerical Algorithm
a Collect in the new libMath all the numerical algorithms

(Derivation, integration, root finders, etc..) from TF1.
`maintain the current methods for user convenience and backward

compatibility
a use the classes already developed in MathMore:

`Derivator, Integrator, RootFinder
`Have a direct implementation extracting the code from TF1
`same interface can be used for algorithms implemented using GSL

⌧the code will be in the MathMore library and plug-in manager could be
used in this case to load the plug-in’s in MathMore

a Algorithms could be used directly by the users (with-out
the need of having a TF1) or from other ROOT classes
`user just needs to provide any callable object

9

10

Summary
a Proposing a new Math library merging MathCore with

some existing ROOT Math functionality present in libCore
and libHist.
`it would be nice to maintain independence of the library
`small library size : ~ 500 KB
`we should temporarily have current MathCore dictionaries (for

the template physics vector) in a separate library
a Proposed restructure of TF1 :

`use new function interfaces
⌧extend capability of the class

`use numerical algorithms from libMath
a Possible future extensions:

`Add the interfaces and base classes for fitting and minimization
⌧Fitter and Minimizer interfaces, FitData, FitResult

• will use plug-in manager to load minimization library

10

