Sequence-read extraction from
Counting de Bruijn Graphs

Dmytro Horyslavets

Mentors: Andre Kahles, Harun Mustafa (ETH Zürich)
Motivation

- both amount and sequencing capacity for biomedical sequencing data show exponential growth

- broad need for indexing of and search in (raw) sequencing data at petabase scale

- compressed k-mer graphs are a promising technology to meet these demands
Background

- **De Bruijn graph** is a directed graph of overlaps between sequences of symbols.
- A **Colored** (annotated) DBG is a generalization to distinguish multiple samples.
- A **Counting** DBG is a notion generalizing annotated DBG by supplementing each node-label relation with additional attributes.

Source: https://www.researchgate.net/file/Example-reads-and-the-corresponding-de-Bruijn-graph-for-k-3-The-edge-labels.png_260713899
Task

Given an annotated **Counting de Bruijn Graph** and a query sequence, return the set of all input read sequences that overlap with the query.
Algorithm overview

Input node: **ATGC**

1. Traverse the graph forward and backward from the input node.
Algorithm overview

Input node: **ATGC**

1. Traverse the graph forward and backward from the input node.
Algorithm overview

Input node: ATGC

1. Traverse the graph forward and backward from the input node.
2. Fetch the nodes’ annotations stored in a compressed format.
Algorithm overview

Input node: **ATGC**

1. Traverse the graph forward and backward from the input node.
2. Fetch the nodes’ annotations stored in a compressed format.
3. Find walks in the graph that include the input node.
Algorithm overview

Input node: **ATGC**

1. Traverse the graph forward and backward from the input node.
2. Fetch the nodes’ annotations stored in a compressed format.
3. Find walks in the graph that include the input node.
4. Reconstruct read sequences.

Result: **CAATGCTGCTAATGCTA**

AATGCTT
Further work

- Apply on real world data. Possible use cases:
 - Single-cell sequencing (search of transcript in the graph within different cell types).
 - Environmental metagenomics (search of unknown DNA, taxonomic profiling).
- Scalability:
 - Implement local graph decompression.
 - Implement batch mode.
Thank you!