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PV-Finder Overview
● Initially developed for use in LHCb data

○ They currently achieve efficiency values that 
exceed 98% for a pileup of 5.6 with a low false 
positive rate

● Goal: use machine/deep learning techniques to 
reconstruct primary vertices using detector hits and 
reconstructed tracks

● Step 1: Use reconstructed tracks to calculate Kernel 
Density Estimators (KDEs) for each event

● Step 2: Use truth information to calculate labels for 
use in the neural network

● Step 3: Use a convolutional neural network to 
predict the primary vertex locations

z (mm)

KDE: Track density as a function of z (along the 
beamline). Peaks correlate with vertex locations

LHCb Monte Carlo
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Reconstructed tracks → POCA ellipsoids
● Using truth-matched reconstructed tracks for training purposes
● Each track is represented as a 3-dimensional ellipsoid

○ The center of each ellipsoid is the track’s point of closest approach (POCA) to the beamline
○ The size of each ellipsoid is proportional to the track’s uncertainty
○ Smaller ellipsoids have a larger contribution

● Effect of using POCA ellipsoids: tracks only contribute significantly where they 
are closest to the beamline (ideally closest to their parent vertex)

EllipsoidTrack

BEAMLINE

POCA2



Visualization: POCA Ellipsoid Projections
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POCA Ellipsoids → KDE
● For each POCA ellipsoid, a 

Gaussian probability is 
calculated

● For each bin along the z-axis, 
the probabilities of the 
contributing tracks are 
summed

● For each z bin, we locate the 
point with the maximum 
track density and record it’s 
height and position

○ Coarse grid search 
followed by MINUIT 
minimization starting 
from that point

● The height becomes the KDE 
value for that z bin

● The position of the maximum 
(XMax, YMax) are also used 
as features

LHCb Monte Carlo
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Summary of Neural Network 
Input Features

1. KDE-A: sum of 
probability

2. KDE-B: sum of 
(probability squared)

3. XMax: the x-coordinate 
of the KDE-A value for 
each z bin

4. YMax: the y-coordinate 
of the KDE-A value for 
each z bin
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UNet Architecture
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convolution, batch 
normalization, ReLU

max pool

up-convolution

skip connection 
(concatenation)

softplus

(2) Ronneberger, Fischer, & Brox  (2015)6

https://arxiv.org/abs/1505.04597


Training Results
ATLAS Run 2 ttbar sample (40000 training/10000 validation) 
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Vertex-Vertex Resolution (Comparison to AMVF)
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Classification Scheme
Developed to provide comparison to standard ATLAS method (AMVF)[3]

1. Iterate through reconstructed vertex positions
a. Find list of truth vertices with a z-position within σ

vtx-vtx
 of the 

reconstructed vertex z-position
b. If this list is empty, the reconstructed vertex is classified as fake
c. If this list has one entry, the reconstructed vertex is classified as clean, 

and that truth vertex is assigned to the reconstructed vertex
d. If this list has more than one entry, the reconstructed vertex is classified 

as merged and the truth vertices are assigned to the reconstructed 
vertex

2. Iterate through the truth vertex assignments
a. If a truth vertex has more than one assignment to a clean reconstructed 

vertex, then all but the closest reconstructed vertex are reclassified as 
split.9

https://cds.cern.ch/record/2670380


Number of Reconstructed Vertices (PV-Finder vs AMVF)
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Ratio of the Number of Reconstructed Vertices (PV-Finder to AMVF)
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Efficiency as a function 
of number of associated 
truth-matched 
reconstructed tracks
Efficiency = (# clean + # merged) / (total)
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Conclusions

● PV-Finder appears to achieve better vertex-vertex resolution than AMVF
● AMVF performs better for PVs with lower track multiplicity
● Under this new classification scheme, PV-Finder produces more clean 

reconstructed vertices at high pileup
● Future Studies

○ Fine-tune neural network parameters and input features to increase performance
○ Train on lower-multiplicity tracks to try to increase performance for PVs low track multiplicity
○ Use PV-Finder output as seeds for assigning reconstructed tracks to reconstructed PVs

■ Necessary for physics analysis
■ Will allow a better comparison to AMVF (can use their classification method)
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