

MInternational UON Collider Collaboration

RCS1 transverse stability with resonator impedance Single-turn and multi-turn wakefield case

D. Amorim, E. Métral Thanks to F. Batsch, C. Carli, H. Damerau, I. Karpov, General design meeting 2022-09-12

Goal and scope of the study

Goal and scope of the study

• **Many RF cavities** (O(200) for the first RCS) will be needed to provide the large acceleration gradient

- These cavities will create **high-order modes**
 - Resonances can be broad or very peaked, depending on cavity design, mode damping...
 - Resonance frequency will depend on the main RF frequency and cavity design
 - Resonance amplitude will depend on the cavity design and number of cavities

Goal and scope of the study

- Goal: obtain a first estimate of the limits for resonator shunt impedance, resonance frequency and quality factor in the transverse plane
- Since type and number of cavities are not fixed yet, **scan the parameter space** to find the limits in terms of transverse stability

• Investigate the **effect of single-turn and multi-turn wakefields** on the stability limits

Resonator impedance and wakefield

Resonator impedance model

- Use a single horizontal dipolar resonator impedance/wakefield
- Scan its shunt impedance R_s, its resonance frequency f_{res} and its quality factor Q
- Note: Plot only shows a few shunt impedances, with Q=1000

Scan parameters

	Value	
Resonator shunt impedance $\mathrm{R}_{_{\mathrm{s}}}$	1 k Ω /m to 100 T Ω /m	
Resonance frequency f_{res}	10 MHz to 1 THz	
Quality factor Q	100, 300, 1000, 3000, 10000, 30000	

2022-09-12

) ----

- For some (f_{res}, Q), the wakefield can extend well beyond one turn
- Example here with f_{res} =10 MHz.

• The wake can be written

$$W(t) = \frac{2\pi f_{res} R_s}{Q\sqrt{1 - \frac{1}{4Q^2}}} \exp\left(-\frac{2\pi f_{res}}{2Q}t\right) \sin\left(2\pi f_{res}\sqrt{1 - \frac{1}{4Q^2}}t\right)$$

 The exponential term (plotted in orange) dictates the wakefield decay

Resonator impedance model

Number of turns (1 turn = 20µs) to reach 90 % wakefield decay

• We can easily deduce the time t required to reach a 90 % wakefield decay:

$$t = -\frac{\ln(0.1)}{\pi} \left(\frac{f_{res}}{Q}\right)^{-2}$$

With our machine parameters, multiturn
wakefield is required if f_{res}/Q < 10⁵

Transverse stability simulations parameters

Transverse stability simulation in the RCS 1

- Simulation including longitudinal map with 32 RF stations + transverse map + transverse wakefield (single turn or multi-turn)
 - Wakefield and transverse map also divided in 32 stations
- Tracking over 100 turns, 5000 macroparticles with PyHEADTAIL
 - Injection energy: 63 GeV
 - Momentum increment: 14.2 GeV/c per turn (equally distributed in the 32 RF stations)
 - Note: only 17 turns are normally needed for the first acceleration stage (63 GeV to 313 GeV)
- Change the number of turns for the wakefield (1, 2, 3, 10 or 50 turns)

2022-09-12

Instability growth can be very quick

- There are 32 RF stations per turn
- Between each station, there are three tracking elements: transverse, longitudinal and wakefield
- Here the instability appears already after the second RF station

Transverse stability simulations results

Stability summary plots, single-turn wakefield

- Emittance is evaluated after 20 turns, slightly longer time than the 17 turns required for the acceleration in the RCS 1
- For each (R_s, f_{res}), indicate if there is emittance growth (red dot) or not (green dot)
 - Emittance growth = $\varepsilon_{turn 20}$ / $\varepsilon_{initial}$
 - Consider the beam unstable if emittance growth > 20 % (criterion to be refined)
 - First show the results obtained with single-turn wakefields
 - Focus on one high-Q case (Q=10 000)
 - Results for other Q factors reported in appendix

Q = 10000

14

2022-09-12

2022-09-12

Summary plot for Q=100/1000/10000

Stability limit versus resonator parameters

- Group the results for the different $\begin{bmatrix} \Box \\ \Box \\ \Box \end{bmatrix}$
- Line shows the first unstable simulation for a given Q factor, versus resonator shunt impedance and frequency
- Shaded area corresponds to the parameter space where the beam is unstable

Summary plot for Q=100/1000/10000

- Stability limit versus resonator parameters
- Group the results for the different Ξ Q factor in one plot
- Line shows the first unstable simulation for a given Q factor, versus resonator shunt impedance and frequency
- Shaded area corresponds to the parameter space where the beam is unstable

Summary plot for Q=100/1000/10000

- Now the shunt impedance limit is divided by the resonator quality factor Q
 - Provides a limit on R_s/Q for the whole ring
- This limit should be divided by the number of cavities to check if their design R_s/Q is within the limit
 - Example: at 100 MHz, R_s/Q = 10 GΩ/m. With 1000 cavities, R_s/Q limit is 10 MΩ/m per cavity

Stability limit versus resonator parameters

Stability summary plots, multi-turn wakefield

- Focus on one high-Q case (Q=10 000)
 - Results for different Q factor are reported in appendix
- Compare the 50-turn wakefield results to the single-turn wakefield case
 - Results for different number of wakefield turns and Q factor are reported in appendix
- In the plots, highlight the resonator frequency for which $f_{res}/Q < 10^5$
 - For Q=100, if f_{res} < 10⁷ Hz, multi-turn wake should affect stability
 - For Q=10000, if $f_{res} < 10^9$ Hz, multi-turn wake should affect stability

Q = 10000, 50-turn wakefield

Summary of transverse stability simulation in the RCS 1

- Simulation including longitudinal map (32 RF stations) + transverse map + transverse single-turn or multi-turn wakefield
- Tracking over 100 turns, 5000 macroparticles with PyHEADTAIL
- In single-turn wakefield regime, the stability criterion depend on R_s/Q and f_{res}
- Multi-turn wakefield is required when **f**_{res}/**Q** < **10**⁵ for the RCS1 case
- Effect is mostly visible for high-Q resonator (Q > 10000)
 - Below the $f_{res}/Q < 10^5$ criterion, simulations with high R_s become unstable
 - Above this criteron, we recover the single turn behavior studied previously

2022-09-12

Summary of transverse stability simulation in the RCS 1, with multi-turn wakefield

- Summarize on one plot the singleturn and multi-turn wakefield stability limits
- The single-turn limit (black line) depends on the resonator frequency and the R_{c}/Q

The multi-turn limit (color lines) depends on the resonator shunt impedance R

Stability limit versus resonator parameters

Summary of transverse stability simulation in the RCS 1, with multi-turn wakefield

 $f_{res}^{}/Q < 10^{5}$ Yes No Single turn regime: Multi-turn $R_{s} / Q < 10^{6} - 10^{8}$ regime: $R_{c} < 10^{13} \Omega/m$ Ω/m (depending on resonator frequency)

- Refine simulations with finer parameter space
 - In particular the resonator shunt impedance R_s
 - Convergence check with large number of macroparticles (convergence study) and wakefield slices

- Investigate in details the beam behavior during an instability
 - Dependence on number of RF stations and acceleration
 - Dependence on wake-field parameters...

Appendix : impedance and stability simulation parameters

25

Resonator impedance model

 We can plot the exponential term versus f_{res}/Q for a given time t (number of turns)

$$\exp\left(-\frac{2\pi f_{res}}{2Q}t\right)$$

 Shows by how much the wake decreased after N turns for a given (f_{res}, Q)

26 ---

Resonator impedance model

- Resonator frequency is chosen to fall on a bunch spectrum line
- At high frequency (right plot), the resonance overlaps with many spectrum line
- Assumptions:
 - injection energy revolution frequency f₀
 - $Q_{x} / Q_{y} = 0.26 / 0.26$

2022-09-12

Stability simulation parameters

Collaboration Machine parameters						
		Unit	Value			
	Circumference	m	5990			
	Beam momentum at injection	GeV/c	63.1			
	Momentum increase per turn	GeV/c	14.212			
	Rev. frequency	kHz	50			
	RF frequency	MHz	1300			
	Harmonic number		25957			
	RF voltage	MV	20 100			
	α_p		2.4e-3			
	Avg. beta x/y	m	50 / 50			
	Chromaticity Q' _x /Q' _y		0/0			
2(Detuning from octupoles x/y	m⁻¹	0/0			

	Unit		Value			
Synchrotron tune Q _s at injection			1.52			
Synchrotron period	turns		0.66			
Bunch length 1σ	mm		25			
Bunch intensity	Particles per bunch		2.6e12			
ε _x / ε _y	µm rad		25			
# of macropaticles			5000			
Scanned parameters						
		Value				
Resonator shunt impedance R _s		1 k Ω /m to 100 T Ω /m				
Resonance frequency $\mathbf{f}_{_{\text{res}}}$		10 MHz to 1 THz				
Quality factor Q		100, 300, 1000, 3000, 10 000, 30 000				
Wakefield turns		1, 2, 3, 10, 50	/8			

Appendix : stability results with single-turn wakefield

29

2022-09-12

2022-09-12

Q = 10000

32

2022-09-12

2022-09-12

Q = 3000

34

2022-09-12

35

Appendix : stability results with multi-turn wakefield

36

MInternational UON Collider Collaboration

Q = 100, 10-turn wakefield

Q = 100, 50-turn wakefield

Q = 10000, 2-turn wakefield

MInternational UON Collider

