

UON Collider

3TeV collider transverse beam stability studies

D. Amorim, E. Métral Thanks to F. Batsch, C. Carli, H. Damerau, I. Karpov, General design meeting 2022-09-12

Goal and scope of the study

- Get a first estimate of the vacuum chamber radius achievable w.r.t transverse beam stability
- Investigate different materials for the chamber
- Important input for the magnet design
 - Chamber radius is an input for the radial build model (see L. Bottura presentation https://indico.cern.ch/event/1162890/)

Assumptions and simulation parameters

3 TeV collider impedance and stability

2022-09-12

Impedance simulations parameters

- 1.5 TeV per beam, 4.5 km long beam chamber
- Scan the chamber radius from 10 mm to 40 mm
- Scan also the chamber material Machine parameters

	Unit	Value	
Circumference	m	4500	
Chamber length	m	4500	
Chamber geometry		Circular	
Chamber material		Tungsten 300 K / Tungsten 80K Copper 300 K / Tungsten 20 K	
Chamber thickness	m	Inf.	
Chamber radius	mm	10 to 40	
Avg. beta x/y	m	100 / 100	
3 TeV collider impedance and stability			

Impedance simulations parameters: materials

- Past Muon collider studies suggested to use a tungsten liner to intercept muon decay products
 - Decrease the heat load and radiation dose sustained by the magnets
 - Proposal for a liner cooled at 80 K by N. V. Mokhov et al.
 - Also proposal for a tungsten liner at 300 K, see M. Green
- Impedance and stability simulations with four materials: Copper at 300 K, Copper at 20 K, Tungsten at 80 K, Tungsten at 300 K

Liner design to protect from decay product

- Power deposition and radiation damage studies done by D. Calzolari et al., presented at IPAC 22
- 30 mm thick, 50 mm inner radius, tungsten shield
- Shield temperature not yet defined

Liner design to protect from decay product

NINTERNATIONAL UON Collider Collaboration

Liner thickness varies according to magnet type and family

Tungsten liner design from N. V. Mokhov et al.

2022-09-12

3 TeV collider impedance and stability

Impedance simulations parameters: materials

• Infinite thickness for all the chambers simulated

Unit	Value	
Т	7	
К	20	
	70	
nOhm m	0.667	
	Unit T K S nOhm m	

Copper at 300 K

	Unit	Value
Magnetic field	Т	7
Temperature	К	300
RRR		70
DC resistivity	nOhm m	17.9

Tungsten at 80 K

Copper at 20 K

	Unit	Value
Temperature	К	80
DC resistivity	nOhm m	6.06

Tungsten at 300 K

	Unit	Value
Temperature	К	300
DC resistivity	nOhm m	54.4

MInternational VON Collider Collaboration

Impedance simulations parameters: materials

- Resistive wall impedance and wake are proportional to √p
- Copper resistivity versus temperature and magnetic field
 - Simon, Drexler and Reed "Prope rties of copper and copper alloy s at cryogenic temperatures", 19 92
- Tungsten resistivity versus temperature
- Desai et al. "Electrical Resistivity of Selected Elements", 1984 3 TeV collider impedance and stability

Transverse stability simulation parameters in the 3 TeV collider

- Simulation including longitudinal map (1 RF station) + transverse map + transverse wakefield + damper + optionally muon decay
- Tracking over 3000 turns, 5000 macroparticles with PyHEADTAIL, initial intensity
 2.2 10¹² muons, transverse emittance 25 μm rad (detailed parameters in appendix)
- Optionally: include muon decay effect
 - Muon lifetime at 1.5 TeV: 14285 * 2.2 us = 31.4 ms
 - Revolution frequency ~66 kHz → muon lifetime at 1.5 TeV is ~2100 turns

Transverse stability simulation parameters in the 3 TeV collider

- Scan the **chamber radius from 10 mm to 40 mm**
 - 5 mm radius produces too strong wakefields, numerical errors quickly occur
- Scan the transverse damper from 2 to 500-turn gain + no damper
- Horizontal and vertical planes have the same impedance (circular chamber), and same beam parameters → simulation results identical in the two planes

Implementation of the muon beam decay

- Decay element in PyHEADTAIL •
 - Input: decay time (in number of turns) of the beam
 - Use numpy rand function to randomly select the macroparticle that will be deleted, according to the decay time
- Exponential decay behavior reproduced in simulations
- Bunch intensity reduced by 50 % after ln(2)*2100 = 1450 turns

Internationa ION Collide

Growth ratio plots

- Compute the ratio of emittance after a certain time versus initial emittance (25 µm rad)
- For all damper settings and chamber radius, at different number of turns
- We will look at growth ratios after 2000 turns

Simulation results

3 TeV collider impedance and stability

Minimum chamber radius versus material, without muon decay

- Summary plot for the case without muon decay
- For every damper gain, find the chamber radius such as the emittance growth stays below 20 % after 2000 turns
 - No point for a damper setting means that the beam was always unstable

2022-09-12

Minimum chamber radius versus material, with muon decay

- Summary plot for the case without and with muon decay
- For every damper gain, find the chamber radius such as the emittance growth stays below 20 % after 2000 turns
 - No point for a damper setting means that the beam was always unstable

Chamber radius to keep emittance

2022-09-12

Summary of transverse stability simulation in the 3 TeV collider

- Simulation including longitudinal map (1 RF station) + transverse map + transverse wakefield + damper + optionnaly muon decay
- Tracking over 3000 turns, 5000 macroparticles with PyHEADTAIL

- Overall, chamber radii below 18 mm are challenging damper-wise or require cryogenic material
- Radii between 20 and 30 mm allow to use all material with classic damper setting (100, 200 or 500-turn damping)
- Muon decay has a beneficial effect on transverse beam stability
- Gain between 1 and 5 mm on chamber radius for a given material and damper setting 2022-09-12 3 TeV collider impedance and stability 21

Possible next steps for the colliders

Ongoing: repeat the study for the 10 TeV c.o.m collider (10 km circumference)

• Investigate more complex chamber geometries

- If we want to use tighter (< 17 mm) beam chamber, investigate supplementary mitigation measures for beam instabilities
 - Effect of sextupoles (chromaticity)
 - Effect of octupoles (tune spread to enhance Landau damping)

Appendix

3 TeV collider impedance and stability

23

Stability simulation parameters

Machine parameters

	Unit	Value
Circumference	m	4500
Beam momentum	GeV/c	1500
Rev. frequency	kHz	66
RF frequency	MHz	800
Harmonic number		12008
RF voltage	MV	250
α _p		-2.15e-6
Avg. beta x/y	m	100 / 100
Chromaticity Q' _x /Q' _y		0/0
Detuning from octupoles x/y	m ⁻¹	0/0

	Unit	Value
Synchrotron tune Q _s		0.000829
Synchrotron period	turns	1206
Bunch length 1σ	mm	5
Bunch intensity	Particles per bunch	2.2e12
Bunch intensity ε _x / ε _y	Particles per bunch µm rad	2.2e12 25

Scanned parameters

	Unit	Value
Chamber radius	mm	10 to 40
Transverse damper		2 to 500 turns/No damper

Impedance for Copper at 300 K

Impedance for Copper at 20 K

Impedance for Tungsten at 300 K

Copper 20 K, after 2000 turns, with muon decay

