Acceptance/Selection Issues for PEW at $\sqrt{s} pprox M_{ m Z}$

Graham Wilson (Univ. of Kansas)

September 14, 2022

Main goal: measure $\sigma_{f\bar{f}}(\sqrt{s})$ for $f = q, e, \mu, \tau$ as function of \sqrt{s} .

- Center-of-mass energy knowledge, \sqrt{s}
- **2** Numerator event counts, $N_{\rm sel}$
- ${f 0}$ Selection efficiency within acceptance, arepsilon
- Acceptance, A
- **(a)** Background, $N_{\rm bkg}$
- ightarrow Normalization, $\mathcal L$

 $\sigma(\sqrt{s}) = \frac{N_{\rm sel} - N_{\rm bkg}}{\sigma \Lambda C}$

The four channels: multihadrons (qq̄), e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$

The ALEPH, DELPHI, L3, OPAL and SLD Collaborations / Physics Reports 427 (2006) 257-454

26

LEP selections (Physics Reports)

	ALEPH	DELPHI	L3	OPAL
qq Final state				
Acceptance	s'/s > 0.01	s'/s > 0.01	s'/s > 0.01	s'/s > 0.01
Efficiency (%)	99.1	94.8	99.3	99.5
Background (%)	0.7	0.5	0.3	0.3
e ⁺ e ⁻ Final state				
Acceptance	$-0.9 < \cos \theta < 0.7$	$ \cos \theta < 0.72$	$ \cos \theta < 0.72$	$ \cos \theta < 0.7$
	$s' > 4m_{\tau}^2$	$\eta < 10^{\circ}$	$\eta < 25^{\circ}$	$\eta < 10^{\circ}$
Efficiency (%)	97.4	97.0	98.0	99.0
Background (%)	1.0	1.1	1.1	0.3
$\mu^+\mu^-$ Final state				
Acceptance	$ \cos \theta < 0.9$	$ \cos \theta < 0.94$	$ \cos \theta < 0.8$	$ \cos \theta < 0.95$
	$s' > 4m_{\tau}^2$	$\eta < 20^{\circ}$	$\eta < 90^{\circ}$	$m_{e\overline{e}}^2/s > 0.01$
Efficiency (%)	98.2	95.0	92.8	97.9
Background (%)	0.2	1.2	1.5	1.0
$\tau^+\tau^-$ Final state				
Acceptance	$ \cos \theta < 0.9$	$0.035 < \cos \theta < 0.94$	$ \cos \theta < 0.92$	$ \cos \theta < 0.9$
	$s' > 4m_{\tau}^2$	$s' > 4m_\tau^2$	$\eta < 10^{\circ}$	$m_{c\bar{c}}^2/s > 0.01$
Efficiency (%)	92.1	72.0	70.9	86.2
Background (%)	1.7	3.1	2.3	2.7
0				

Ideal acceptances, selection efficiencies^a and background contribution at the peak of the resonance (1994 data)

^aThe lepton selection efficiencies given by the experiments were in some cases quoted with respect to full acceptance in cos θ ; for the purpose of comparison, they were corrected to the fiducial cuts in cos θ actually used in the analyses, assuming a shape of the differential cross-section according to $(1 + \cos^2 \theta)$.

η is the acollinearity angle.

Leptonic Channels

With excellent momentum resolution and calorimetry should normally be easily separable.

LEP systematics (Physics Reports)

Experimental systematic errors for the analyses at the Z peak

	ALEPH			DELPHI			
	1993	1994	1995	1993	1994	1995	
$\mathscr{L}^{\mathrm{exp}}$	0.067%	0.073%	0.080%	0.24%	0.09%	0.09%	
$\sigma_{\rm had}$	0.069%	0.072%	0.073%	0.10%	0.11%	0.10%	
$\sigma_{\rm e}$	0.15%	0.13%	0.15%	0.46%	0.52%	0.52%	
σ_{μ}	0.11%	0.09%	0.11%	0.28%	0.26%	0.28%	
σ_{τ}	0.26%	0.18%	0.25%	0.60%	0.60%	0.60%	
Ae	0.0006	0.0006	0.0006	0.0026	0.0021	0.0020	
$A_{\rm EP}^{\mu \rm D}$	0.0005	0.0005	0.0005	0.0009	0.0005	0.0010	
$A_{\rm FB}^{\tau}$	0.0009	0.0007	0.0009	0.0020	0.0020	0.0020	
	L3			OPAL			
	1993	1994	1995	1993	1994	1995	
$\mathscr{L}^{\mathrm{exp}}$	0.086%	0.064%	0.068%	0.033%	0.033%	0.034%	
$\sigma_{\rm had}$	0.042%	0.041%	0.042%	0.073%	0.073%	0.085%	
$\sigma_{\rm e}$	0.24%	0.17%	0.28%	0.17%	0.14%	0.16%	
σ_{μ}	0.32%	0.31%	0.40%	0.16%	0.10%	0.12%	
σ_{τ}	0.68%	0.65%	0.76%	0.49%	0.42%	0.48%	
A_{EP}^{e}	0.0025	0.0025	0.0025	0.001	0.001	0.001	
$A_{\rm EP}^{\mu B}$	0.0008	0.0008	0.0015	0.0007	0.0004	0.0009	
A_{FB}^{TB}	0.0032	0.0032	0.0032	0.0012	0.0012	0.0012	

The errors are relative for the cross-sections and absolute for the forward-backward asymmetries. None of the common errors discussed in Section 2.4 are included here.

Normalization

Need a calculable QED process with known cross-section for luminosity measurement. LEP approach: count small angle Bhabhas.

Cross-section of 79 nb for OPAL Si-W luminometer defined acceptance. (larger than $\sigma_Z(vis) \approx 34$ nb). Need exquisite control of inner-most polar angle measurement. Experimental uncertainty of 0.034%.

Graham Wilson (Univ. of Kansas)

- All four channels (and detectors) are different!
- Fiducial acceptance cuts are used for the leptonic channels.
- Hadronic channel. Accounts for 88% of visible Z decays. Efficiency quoted for 4π acceptance.
- $\bullet\ e^+e^-$ channel. Limit acceptance to limit t-channel and s-t interference contributions.
- $\tau\tau$ channel. Lowest efficiency and highest background (mostly $\mu^+\mu^-$ contamination).

- It would seem appropriate to do a more differential measurement that extends the acceptance to the t-channel dominated region. This would allow a more explicit check of the t/s+t contribution.
- Puts more and more emphasis on polar angle measurement precision.

- Design detector with **odd** number of sectors/wire planes! (ie. azimuthally back-to-back tracks should not have correlated reconstruction inefficiencies like OPAL).
- Residual background with a modern detector should be very small.

• Modern detectors should be able to more effectively use vertexing in event selection.

- I suspect this is the most challenging channel.
- Efficiency depends on reconstruction of hadronic jets below the tracker acceptance in the forward calorimetry region. Dominant uncertainty of 0.066% for OPAL.
- Puts an emphasis on hermeticity and forward region design.
- Important backgrounds from dileptons $(\tau \tau)$ and mostly multi-peripheral (and non-resonant) $e^+e^- \rightarrow e^+e^-q\bar{q}$ (51 ± 7 pb).
- Need full detector level simulations to assess?

Can the non-resonant background be predicted? Or does it need to be measured? (I suspect the latter).

- Need a calculable QED process with known cross-section for luminosity measurement.
- Small angle Bhabhas are great for statistics (79 nb), and an obvious choice for *relative* luminosity measurement for FCC-ee.
- With Tera-Z type statistics, one can think of using an alternative for *absolute* luminosity.

One alternative is $e^+e^- \rightarrow \gamma\gamma$,

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{s} \frac{1 + \cos^2\theta}{\sin^2\theta}$$

- Cross-section of 41 pb for $20^{\circ} < \theta < 160^{\circ}$.
- See C Calame et al. (arXiv:1906.08056).
- Major issue is $e^+e^- \rightarrow e^+e^-$ background rejection ($\sigma = 2.6 \text{ nb}$).
- Less sensitive than small angle Bhabhas to forward angle acceptance understanding (very similar to numerator events).
- Potentially theoretically smaller uncertainties.

In this brief talk, I focused on the core Z lineshape observables and neglected,

- asymmetries
- tau polarization
- neutrino channel $e^+e^- \rightarrow \nu \bar{\nu} \gamma(\gamma)$
- identified hadronic decays ($b\bar{b}$, $c\bar{c}$ etc)

which are all obviously important related topics.

- Initial superficial look at some of the relevant issues based on LEP PR.
- I had planned a more in-depth review and comparison, but this is what I have for today.
- Will do this certainly for the $e^+e^- \rightarrow \mu^+\mu^-$ channel which has synergies with on-going center-of-mass energy measurement studies.
- Obviously we would like to go far beyond what was already done at LEP, but that is the foundation to build from.

Backup Slides