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Actual evidences of lepton universality violation

𝑩 → 𝑫(∗)𝝉𝝂𝝉 𝐯𝐬 𝑩 → 𝑫(∗)ℓ𝝂ℓ (ℓ = 𝒆, 𝝁)

𝑩 → 𝑲(∗)µµ 𝐯𝐬 𝑩 → 𝑲(∗)𝒆𝒆

~20% excess of t 

compared to SM*

~20% deficit of µ 
compared to SM*

* Caveat : hadronic matrix uncertainties because phase spaces are very different

* Caveat :  - experimentally difficult measurement for electrons (requires excellent detector resolutions),
- Do we understand correctly the J/y(1S, 2S …) interferences



𝑚 𝐾+ℓ+ℓ− [GeV]

µ+µ−
𝑒+𝑒− w/ Cal

𝑒+𝑒− w/o Cal

𝐵+ → 𝐾+ℓ+ℓ−

𝜎 𝑚µµ ≈ 20MeV

𝜎 𝑚µµ ≈ 7MeV

𝜎 𝑚𝑒𝑒 ≈ 9MeV
w/ Cal

𝜎 𝑚𝑒𝑒 w/o Cal

FCC

𝐅𝐂𝐂

න𝓛𝒅𝒕 150 𝑎𝑏−1

𝐵+ → 𝐾+µ+µ− ~1.5 ∙ 105

𝐵0 → 𝐾∗0µ+µ− ~2.5 ∙ 105



𝑩 → 𝑫(∗)ℓ𝝂ℓ 𝑩 → 𝑲(∗)ℓℓ

Dominant Diagrams in SM

Examples of Diagrams with NF

Could these effects be NF ? 



Dominant Diagrams in SM

Examples of Diagrams with NF

(same diagram as 𝑩 → 𝑫 ∗ ℓ𝝂ℓ )

𝑩𝒄 → ℓ𝝂ℓ

(same diagram as 𝑩 → 𝑲(∗)ℓℓ)

𝑩𝒔 → ℓ+ℓ−

Note : only t and µ modes might be accessible because of helicity suppression 



Experimental situation in HF sector for leptonic decays

No deviation observed … but precisions are still poor



Many other modes can be used for probing lepton universality

Γ 𝑉 → ℓ+ℓ− =
4𝜋

3𝛼em

𝑓𝑉
2

𝑚𝑉
× 𝑞𝑞

2 1 −
4𝑚ℓ

2

𝑚𝑉
2



tn vs µn 

µn vs en 

Experimental situation in other leptonic decays



tt vs µµ

µµ vs ee

Experimental situation in other leptonic decays (cont’d) 



Large number of Z, W, t , J/Y , B … are expected at FCCee

Particle
type

𝑬𝒄𝒎 න𝓛𝒅𝒕 (𝒂𝒃−𝟏) # particles
𝝈 𝒎𝝁𝝁

MeV

𝝈 𝒎𝝁𝝁𝑲∗𝟎

MeV

𝑍 91.2 150 ~𝟔 ∙ 𝟏𝟎𝟏𝟐 ~140 n/a

𝐵±, 𝐵0 ( ത𝐵0) 91.2 150 ~𝟖 ∙ 𝟏𝟎𝟏𝟏 ~7.5 ~6.6

𝐵𝑠 ( ത𝐵𝑠) 91.2 150 ~𝟐 ∙ 𝟏𝟎𝟏𝟏 ~7.5 n/a

𝐽/𝜓 91.2 150 ~𝟐 ∙ 𝟏𝟎𝟏𝟎 ~5.3 n/a

𝜏± 91.2 150 ~𝟒 ∙ 𝟏𝟎𝟏𝟏 n/a n/a

𝑊± 161 10 ~𝟑 ∙ 𝟏𝟎𝟖 n/a n/a

𝑚𝜇𝜇 (𝐺𝑒𝑉)

𝐵0(𝐵𝑠) → 𝜇+𝜇−



tn, tt 

vs 
µn , mm

µn, mm

vs
en, ee

Anticipated statistical sensivities for probing lepton universality at FCC 



Statistical sensitivities are outstanding !

This raises very challenging obstacles for the systematics errors
 Theoretical errors

 Calculation of ratios of BR 
 Calculation of the effect of the radiative corrections (ISR and FSR)

 Experimental systematics
 For t versus m , need to improve the errors on the t Branching fractions

in particular the 3 prongs (will be the case at FCC but strong constraints on      
detector )

 More difficult is to estimate the acceptance effects for the muons versus the 
electrons



tn, tt 

vs 
µn , mm

Anticipated statistical sensivities for probing lepton universality at FCC 



Statistical sensitivities are at the several % level

 Theoretical errors are less of a problem but should assess them
 Experimental  systematics 

 For t versus m , need to improve the errors on the t Branching fractions
in particular the 3 prongs (will be the case at FCC)

 Detector systematics should be manageable at the sub % level 



R.A. and S. Jadach

https://arxiv.org/abs/1908.06338
https://doi.org/10.1016/j.physletb.2019.135034

Idea is to look for interference with diagrams with measured
couplings via the g energy sprectrum
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Diagrams with Well
known couplings

• The method proposed would lead to a considerable improvement

on the presicion on 𝑔𝑍
𝜈𝑒 at FCC

 𝜹(𝒈𝒁
𝝂𝒆) = ±𝟏. 𝟐% with a excellent Xtal-type calorimètre (

𝛿𝐸𝛾

𝐸𝛾
=

𝟎.𝟎𝟑

𝐸𝛾
⊕0.005)

𝐩𝐫𝐞𝐬𝐞𝐧𝐭 𝜹(𝒈𝒁
𝝂𝒆) = ±𝟏𝟖%

https://arxiv.org/abs/1908.06338
https://doi.org/10.1016/j.physletb.2019.135034


Conclusions

FCC enables to probe lepton universality in a very large numbers of modes 
• Potential sensitivities are outstanding

• However it requires both important theoretical and experimental 
challenges in order to match the statistical uncertainties

• Should we observe a significant deviation, the multiplicity of mode 
would help understanding the origin of the underlying new physics



Additionnal slides



Detector response
 Modelisation of the detector response :
• Detailed description of tracks, accounting for multiple scattering

 For vertexing Full MC events + response of the IDEA detector with DELPHES
• Genuine vertex fitting



R.A. and S. Jadach

« …making the neutrino flavor visible in Z decays »

Neutrino counting measured at LEP with/without radiative g : 

However NO distinction between neutrino flavor

https://arxiv.org/abs/1908.06338
https://doi.org/10.1016/j.physletb.2019.135034

Beam-beam effect correction
G. Voutsinas et al. , arXiv:1908.01704

𝑁𝜈 = 2.9963 ± 0.0074

Improved bhabha Xsection
P.Janot S.Jadach , arXiv:1912.02067

https://arxiv.org/abs/1908.06338
https://doi.org/10.1016/j.physletb.2019.135034


PDG
From νµ e and νe e scattering

𝑔𝑍
𝜈𝑒

poorly measured

Can one do better at FCC-ee?

𝑔𝑍
𝜈𝜏= ?

In the following we assume 𝑁𝑖𝑛𝑣 ≡ 3 𝜈 since it will be measured at FCC with negligible error

𝑔𝑍
𝜈𝑒 = 1 + 𝜂 , 𝑔𝑍

𝜈𝜇 = 1 , 𝑔𝑍
𝜈𝜏 = 1 − 𝜂We introduce the parameter 𝜂 such as 

𝜂 = 0In Standard Model (lepton universality)

This preserves 𝑁𝒾𝓃𝓋𝒾𝓈𝒾𝒷ℓℯ ≡ 3 𝜈 in Z width

𝑁𝜈 ≡ (𝑔𝑍
𝜈𝑒)2 + (𝑔𝑍

𝜈𝜇)2 + (𝑔𝑍
𝜈𝜏)2

Test lepton universality in 
neutrino sector



Idea is to look for interference with diagrams with well known couplings

Only ne interferea interference effect measures 𝑔𝑍
𝜈𝑒 but HUGE statistics neededaFCCee
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Diagrams with Well
known couplings



෍𝐸𝛾 > 0.1𝐸𝑏𝑒𝑎𝑚

𝜃𝛾 > 15°

𝐸𝑇𝛾 > 0.02 Ebeam

We concentrate on 𝑆 = 161 𝐺𝑒𝑉 with L=10 ab-1 (i.e. with 2 detectors)
MC used KKMC (see Staszek Jadach et al.)

Cuts for 
(b) curve

𝒱 =
𝐸𝛾

𝐸𝑏𝑒𝑎𝑚
≈ 1 −

𝑀𝜈ഥ𝜈
2

𝑠

Essentially 1 g after cuts

54.68 GeV



Zoom on Z Radiative Return (ZRR)

Difference between 𝝂𝝁(𝝉) and 𝝂𝒆

𝑉𝑍 = 1 −
𝑀𝑍
2

𝑆

𝐸𝛾 = 53.13 𝐺𝑒𝑉 𝐸𝛾 = 56.35 𝐺𝑒𝑉



Interference effects may look small but
Huge statistics is available ~25 x 106 events

For simplicity let’s define the Asymmetry S =
𝜎+−𝜎−

𝜎++𝜎−
with 𝜎+ = 𝜎(v>vz) , 𝜎− = 𝜎(v<vz) 

𝛿 𝜂 ≈ 1.9%

MC can be checked with mmg events, although
not exactly same diagrams involved



Error on 𝑔𝑍
𝜈𝑒

Without detector resolution dilution effects

𝛿(𝑔𝑍
𝜈𝑒) = ±0.95%

With detector resolution dilution effects
𝛿𝐸𝛾

𝐸𝛾
=

𝟎. 𝟎𝟓

𝐸𝛾
⊕0.005

𝛿(𝑔𝑍
𝜈𝑒) = ±1.4%

If stochastic term =10% (sampling detector) a 𝛿(𝑔𝑍
𝜈𝑒) = ±2.4%

Can be calibrated with
mmg events

If stochastic term =3% (Excel. Xtal detector) a 𝛿(𝑔𝑍
𝜈𝑒) = ±1.2%

If stochastic term =7% (sampling detector) a 𝛿(𝑔𝑍
𝜈𝑒) = ±1.8%

Xtal-type 
calorimeter is
highly desired

Caveat : Study of the optimal range 
of 𝐸𝛾 is to be done to optimize the 

sensitivity. However general
conclusion for calorimeter is likely
to be the same



Summary

• The method proposed would lead to a considerable improvement on the presicion on 𝑔𝑍
𝜈𝑒

 𝜹(𝒈𝒁
𝝂𝒆) = ±𝟏. 𝟐% with a excellent Xtal-type calorimètre (

𝛿𝐸𝛾

𝐸𝛾
=

𝟎.𝟎𝟑

𝐸𝛾
⊕0.005)

• Assuming 3 n and no new physics coupled to Z, one would derive

 𝜹(𝒈𝒁
𝝂𝝉) = ±𝟒. 𝟔% (limited by resolution on 𝑔𝑍

𝜈𝜇 )

• 𝑆 = 161 𝐺𝑒𝑉 may not be optimal (but we will run there anyway), e.g. 6 months at 𝑆 = 105 𝐺𝑒𝑉 ≡ 13 𝑎𝑏−1

would potentially allow for ~ twice smaller errors. Optimization of C.o.M. energy to be done.

𝛿(𝑔𝑍
𝜈𝑒) ≈ ±0.6%


