Potential and challenges of Lepton Universality studies at FCC-ee

R. Aleksan 14/9/2022

- 1) Motivation
- 2) Decay modes to be used
- 3) Expectation statistical sensitivities @FCC-ee
- 4) Theoretical and experimental limitations
- 5) Conclusions

This talk is not aimed at giving answers but to trigger discussions and hopefully new line of work

Actual evidences of lepton universality violation

$$
\begin{array}{ll}\n\mathbf{B} \rightarrow \mathbf{D}^{(*)}\mathbf{v}_{\mathbf{v}} \quad \mathbf{v}_{\mathbf{S}} \quad \mathbf{B} \rightarrow \mathbf{D}^{(*)}\ell\mathbf{v}_{\ell} \quad (\ell = \mathbf{e}, \mathbf{\mu}) \\
\hline\nR_{D}^{\tau/\ell} = \frac{Br(B \rightarrow D\tau\nu_{\tau})_{exp}/Br(B \rightarrow D\tau\nu_{\tau})_{SM}}{Br(B \rightarrow D\ell\nu_{\ell})_{exp}/Br(B \rightarrow D\ell\nu_{\ell})_{SM}} = 1.37 \pm 0.18\n\end{array} \n\begin{array}{ll}\n\text{compared to SM*} \\
\text{compared to SM*} \\
R_{D^*}^{\tau/\ell} = \frac{Br(B \rightarrow D^* \tau\nu_{\tau})_{exp}/Br(B \rightarrow D^* \tau\nu_{\tau})_{SM}}{Br(B \rightarrow D^* \ell\nu_{\ell})_{exp}/Br(B \rightarrow D^* \ell\nu_{\ell})_{SM}} = 1.23 \pm 0.062 \pm 0.087\n\end{array}
$$

* Caveat : hadronic matrix uncertainties because phase spaces are very different

$$
\begin{array}{llll}\n\mathbf{B} \to \mathbf{K}^{(*)} \mu \mu & \mathbf{vs} & \mathbf{B} \to \mathbf{K}^{(*)} \mathbf{ee} \\
\hline\nR_K^{\mu/\ell} & = & \frac{Br(B \to K\mu^+\mu^-)_{exp}/Br(B \to K\mu^+\mu^-)_{SM}}{Br(B \to Ke^+e^-)_{exp}/Br(B \to Ke^+e^-)_{SM}} \\
R_K^{\mu/\ell} & = & \frac{Br(B \to K^*\mu^+\mu^-)_{exp}/Br(B \to Ke^+e^-)_{SM}}{Br(B \to K^*\mu^+\mu^-)_{exp}/Br(B \to K^*\mu^+\mu^-)_{SM}} \\
\hline\n\end{array} = 0.84 \cdot \frac{(1.042 \times 10^{-10} \text{J} \cdot \text{m}^2 \cdot \text{m}^
$$

* Caveat : - experimentally difficult measurement for electrons (requires excellent detector resolutions), - Do we understand correctly the J/ $\psi(1S, 2S \ldots)$ interferences

 $m(K^{+}\ell^{+}\ell^{-})$ [GeV]

Could these effects be NF ?

$$
\boldsymbol{B}_c \to \ell \boldsymbol{\nu}_{\ell}
$$

(same diagram as $\boldsymbol{B} \to \boldsymbol{D}^{(*)} \ell \boldsymbol{\nu}_{\ell}$)

 $B_s \rightarrow \ell^+ \ell^-$

(same diagram as $\mathbf{B} \to \mathbf{K}^{(*)} \ell \ell$)

Dominant Diagrams in SM

 $\frac{\Gamma(P\to\ell_1\nu_\ell)}{\Gamma(P\to\ell_2\nu_\ell)} = \frac{m_{\ell_1}^2}{m_{\ell_2}^2} \times \left(\frac{m_P^2-m_{\ell_1}^2}{m_P^2-m_{\ell_2}^2}\right)^2 (1+\Delta_{\ell_1/\ell_2})$ Examples of Diagrams with NF

Note : only τ and μ modes might be accessible because of helicity suppression

Experimental situation in HF sector for leptonic decays

No deviation observed … but precisions are still poor

Many other modes can be used for probing lepton universality

$$
\Gamma(W \to \ell \nu_\ell) = \frac{G_F \sqrt{2}}{24\pi m_W} \times \kappa(m_W^2, m_\ell^2, m_{\nu_\ell}^2) \times G \times (1 + \Delta_r)
$$

$$
\Gamma(L \to \nu_L \ell \nu_\ell) = \frac{G_F m_\ell^5}{192\pi^3} \times \left[\zeta_0 \left(\frac{m_\ell^2}{m_L^2} \right) + \left(\frac{\alpha}{\pi} \right) \zeta_1 \left(\frac{m_\ell^2}{m_L^2} \right) + \left(\frac{\alpha}{\pi} \right)^2 \ldots \right]
$$

$$
\Gamma(Z \to \ell^+ \ell^-) = \frac{G_F m_Z^3}{6\pi\sqrt{2}} \sqrt{1 - 4z} \times \left[g_a^2 (1 - 4z) + g_v^2 (1 + 2z) \right] \times (1 + \Delta_r)
$$

$$
\Gamma(V \to \ell^+ \ell^-) = \frac{4\pi}{3\alpha_{\rm em}} \frac{f_V^2}{m_V} \times q_q^2 \left(1 - \frac{4m_\ell^2}{m_V^2}\right)
$$

Large number of Z, W, τ , J/ Ψ , B ... are expected at FCCee

Particle type	E_{cm}	$\mathcal{L}dt\ (ab^{-1})$	# particles	$\sigma(m_{\mu\mu})$ MeV	$\left\{ \bm{m}_{\bm{\mu}\bm{\mu}K^{*0}}\right\}$ $\boldsymbol{\sigma}$ MeV
Z	91.2	150	\sim 6 \cdot 10 ¹²	\sim 140	n/a
B^{\pm} , B^0 $(\,\overline{\!B}{}^{\,0})$	91.2	150	$\sim\!\boldsymbol{8}\cdot\boldsymbol{10^{11}}$	\sim 7.5	~ 6.6
$B_{\rm s}$ $(\overline{B}_{\rm s})$	91.2	150	\sim 2 · 10 ¹¹	\sim 7.5	n/a
J/ψ	91.2	150	\sim 2 · 10 ¹⁰	\sim 5.3	n/a
τ^{\pm}	91.2	150	\sim 4 · 10 ¹¹	n/a	n/a
W^{\pm}	161	10	\sim 3 · 10 ⁸	n/a	n/a

Anticipated statistical sensivities for probing lepton universality at FCC

Statistical sensitivities are outstanding !

This raises very challenging obstacles for the systematics errors

- \triangleright Theoretical errors
	- Calculation of ratios of BR
	- Calculation of the effect of the radiative corrections (ISR and FSR)
- \triangleright Experimental systematics
	- For τ versus μ , need to improve the errors on the τ Branching fractions in particular the 3 prongs (will be the case at FCC but strong constraints on detector)
	- More difficult is to estimate the acceptance effects for the muons versus the electrons

Anticipated statistical sensivities for probing lepton universality at FCC

Statistical sensitivities are at the several % level

- \triangleright Theoretical errors are less of a problem but should assess them
- \triangleright Experimental systematics
	- For τ versus μ , need to improve the errors on the τ Branching fractions in particular the 3 prongs (will be the case at FCC)
	- Detector systematics should be manageable at the sub % level

Precision measurement of the Z boson to electron neutrino coupling at the future circular colliders^{*}

R.A. and S. Jadach

<https://arxiv.org/abs/1908.06338> <https://doi.org/10.1016/j.physletb.2019.135034>

Idea is to look for interference with diagrams with measured couplings via the γ energy sprectrum

present $\delta(g_{Z}^{\nu_e}) = \pm 18\%$

Diagrams with Well known couplings

The method proposed would lead to a considerable improvement on the presicion on $g^{\nu_e}_Z$ at FCC

 $\Rightarrow \delta(g^{\nu_e}_Z) = \pm 1.2\%$ with a excellent Xtal-type calorimètre ($\frac{\delta E_{\gamma}}{E_{\gamma}}$ E_{γ} $=\frac{0.03}{\sqrt{E}}$ $\overline{E_{\boldsymbol{\gamma}}}$ ⊕ 0.005**)**

Conclusions

FCC enables to probe lepton universality in a very large numbers of modes

- Potential sensitivities are outstanding
	- However it requires both important theoretical and experimental challenges in order to match the statistical uncertainties
- Should we observe a significant deviation, the multiplicity of mode would help understanding the origin of the underlying new physics

Additionnal slides

 For vertexing Full MC events + response of the IDEA detector with DELPHES • Genuine vertex fitting

 $cos\theta = 0.707$

 30.70°

0.00°

 $\boldsymbol{\mathsf{d}}$ os $\boldsymbol{\theta} = \boldsymbol{0}$

 4.42

cos

 5.0

Precision measurement of the Z boson to electron neutrino coupling at the future circular colliders^{*}

« …making the neutrino flavor visible in Z decays »

Neutrino counting measured at LEP with/without radiative γ :

Beam-beam effect correction

G. Voutsinas et al. , arXiv:1908.01704

Improved bhabha Xsection P.Janot S.Jadach , arXiv:1912.02067

 $N_{\nu} = 2.9963 \pm 0.0074$

However NO distinction between neutrino flavor

 $\sigma(e^+e^- \to Z \to \text{invisible}) =$ $(g_{Z}^{\nu_{e}}A_{Z}^{\nu_{e}})^{2}+(g_{Z}^{\nu_{\mu}}A_{Z}^{\nu_{\mu}})^{2}+(g_{Z}^{\nu_{\tau}}A_{Z}^{\nu_{\tau}})^{2}+(g_{Z}^{X}A_{Z}^{X})^{2}$

PDG

\n
$$
\begin{cases}\n g_Z^{\nu_e} = 1.06 \pm 0.18 & \text{From } v_\mu \text{ e and } v_e \text{ e scattering} \\
 g_Z^{\nu_\mu} = 1.004 \pm 0.034\n\end{cases}
$$
\n**Can one do better at FCC-ee?**

\n**Test lepton universality in neutrino sector**

In the following we assume $N_{inv} \equiv 3 \nu$ since it will be measured at FCC with negligible error $N_{\nu} \equiv (g_Z^{\nu_e})^2 + (g_Z^{\nu_\mu})^2$ $)^{2}+(g_{Z}^{\nu_{\tau}})^{2}$

We introduce the parameter η such as $g^{v_e}_Z=\sqrt{1+\eta}$, $g^{v_\mu}_Z=1$, $g^{v_\tau}_Z=\sqrt{1-\eta}$ This preserves $N_{invisible} \equiv 3 \nu$ in Z width

In Standard Model $\eta = 0$ (lepton universality)

Idea is to look for interference with diagrams with well known couplings

Only $v_{\rm e}$ interfere \Rightarrow interference effect measures $\left. g_{Z}^{\, \nu} \right.$ v_e **but HUGE statistics needed → FCCee**

We concentrate on $\sqrt{S} = 161$ GeV with L=10 ab⁻¹ (i.e. with 2 detectors) MC used KKMC (see Staszek Jadach et al.)

 \mathcal{D}

N

Zoom on Z Radiative Return (ZRR)

Difference between $v_{\mu(\tau)}$ and v_e

Interference effects may look small but Huge statistics is available \sim 25 x 10⁶ events

 $d\sigma/dv$ [nb], $e^+e^- > 3v\overline{v} + N\gamma$, γ 's taged

MC can be checked with $\mu\mu\gamma$ events, although not exactly same diagrams involved

For simplicity let's define the Asymmetry $\textsf{S} =$ $\overline{\sigma_+-\sigma_-}$ σ_+ + $\sigma_$ with $\sigma_+ = \sigma(v > v_z)$, $\sigma_- = \sigma(v < v_z)$

 $\frac{v_e}{z}$) = $\pm 2.4\%$

 $\frac{v_e}{z}$) = $\pm 1.8\%$

⊕ 0.005

If stochastic term = 10% (sampling detector) \Rightarrow

If stochastic term =**7%** (sampling detector) \Rightarrow

Can be calibrated with $\mu\mu\gamma$ events

0.05

 $\sqrt{E_{\gamma}}$

calorimeter is

highly desired

Caveat : Study of the optimal range of E_{γ} is to be done to optimize the sensitivity. However general conclusion for calorimeter is likely to be the same

Summary

- The method proposed would lead to a considerable improvement on the presicion on $g_Z^{\nu_e}$ $\Rightarrow \delta(g^{v_e}_Z) = \pm 1.2\%$ with a excellent Xtal-type calorimètre $\binom{\delta \bar{E}_\gamma}{E_\gamma}$ $=\frac{0.03}{\sqrt{E}}$ $\frac{03}{E_\gamma} \bigoplus 0.005$
- Assuming 3 v and no new physics coupled to Z, one would derive

$$
\Rightarrow \delta(g_{Z}^{\nu_{\tau}}) = \pm 4.6\% \text{ (limited by resolution on } g_{Z}^{\nu_{\mu}})
$$

• $\sqrt{S} = 161$ GeV may not be optimal (but we will run there anyway), e.g. 6 months at $\sqrt{S} = 105$ GeV $\equiv 13$ ab^{-1} would potentially allow for \sim twice smaller errors. Optimization of C.o.M. energy to be done.

