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Motivation: Importance of hadron structure for nuclear physics

The proton used as a probe in nuclear physics, so important to know its structure.

The pion is the most simple hadron, but still contain the full complexity of QCD.

In calculations of e.g. cross sections for neutrino-nucleus scattering it is needed the
electromagnetic and weak form factors of the nucleons.

The nuclear force is a remnant of the strong force (described by QCD) between quarks and
gluons, i.e. knowledge about the properties of the QCD at low energy is important to
understand the nuclear force from first principles.
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Light-front dynamics

Dynamical system is characterized by ten fundamental quantities, i.e. energy, momentum,
angular momentum and boosts.

Convential form (instant form): dynamical variables refer to physical conditions at some
instant time, e.g. x0 = 0. But, other choices are possible. In the Light-front (LF) dynamics
refer to conditions on a front x+ = t + z = 0. So, commutation relations defined at equal LF
time (x+ = 0).

LF variables: x± = t± z and similarly for the momenta.

After integration over relative momentum k− and putting x+ = 0, the four-dimensional space
reduced to a three-dimensional one (k+,~k⊥).
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Light-front Dynamics (LFD) turns out to be convenient for description of, in particular, relativistic
bound states:

It allows a Fock space expansion of a state vector in terms of contribution with well-defined
particle-number. For example, for a pion:

|p〉 = |n = 2〉+ |n = 3〉+ ... (1)

where each term has an associated boost-invariant wave function Ψn with probability

Pn =

{
n

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

n

∑
i=1

xi

)
δ

(
n

∑
i=1

~ki⊥

)
|Ψn(x1,~k1⊥, x2,~k2⊥, ...)|2 (2)

In Eq. (1), the leading contribution is referred to as valence component.

Using the Fock space expansion one can derive a Schroedinger like equation of the form
(P⊥ = 0)

HLC|Ψ〉 = M2|Ψ〉, HLC = P+P−, (3)

with P+ diagonal and P− a functional. But, in practice Fock-expansion has to be truncated to
finite order.
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The light-front wave function gives access to various observables in momentum space.
For example:

Electromagnetic form factors
The parton distribution function, f1(x1), i.e. probability distribution for a quark having a momentum
fraction. Extracted from inclusive deep inelastic scattering, only scattered lepton detected.
Transverse momentum distribution. Dependence on both momentum fraction x and transverse one
~k⊥ . Associated with semi-inclusive deeply inelastic scattering (SIDIS), also high-momentum hadron
detected.

Additionally, in the double parton scattering cross section enters the double parton
distribution function (DPDF) [1]:

D(x1, x2,~η⊥) =
∞

∑
n=3

Dn(x1, x2,~q⊥) =
∞

∑
n=3

∫ d2k1⊥
(2π)2

d2k2⊥
(2π)2

{
∏

i 6=1,2

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}

×δ

(
1−

n

∑
i=1

xi

)
δ

(
n

∑
i=1

~ki⊥

)
Ψ†

n(x1,~k1⊥ +~η⊥ , x2,~k2⊥ −~η⊥ , ...)Ψn(x1,~k1⊥ , x2,~k2⊥ , ...) ,

(4)

[1] B. Blok et al, PRD 83 (2011) 071501 (R).
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Models

Pion:
The so-called Bethe-Salpeter (BS) equation is used in Minkowski space together with a quark-gluon
vertex (finite-range interaction).
An effective model but with parameters inspired by Lattice QCD.
The full BS amplitude used, i.e. no truncation in Fock space.

Proton:
More simple, at this stage;
Fock basis truncated to valence order and spin degree-of-freedom not included.
The quark-quark transition amplitude has a pole representing the s-wave diquark introduced
through the zero-range interaction between two of the quarks. In that sense it is an effective
low-energy model.
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Pion Bethe-Salpeter equation

The BS amplitude, describing π+, obeys the equation 1

Φ(k, p) = S(k + p/2)
∫ d4k′

(2π)4 Sµν(q)Γµ(q)φ(k′, p)Γ̂ν(q)S(k− p/2);

Γ̂ν(q) = CΓν(q)C−1,

(5)

where we currently use bare progagators for the quarks and gluons, i.e.

S(k) = i
/k + m

k2 −m2 + iε
, Sµν(q) = −i

gµν

q2 − µ2 + iε
, (6)

and the quark-gluon vertex is described by

Γµ(q) = ig
µ2 −Λ2

q2 −Λ2 + iε
γµ, (7)

i.e. dressed by a simple form factor characterized by the scale parameter Λ.

1W. de Paula et al, Eur. Phys. C (2017) 77
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The BS amplitude is decomposed as

Φ(k, p) =
4

∑
i=1

Si(k, p)φi(k, p) (8)

where Si is a Dirac structure.

Each scalar function φi written in terms of Nakanishi integral representation:

φi(k, p) =
∫ 1

−1
dz′
∫ ∞

0
dγ′

gi(γ
′, z′)

[k2 + z′p · k− γ′ − κ2 + iε]3
(9)

The following system of coupled integral equations can be obtained:∫ ∞

0
dγ′

gi(γ
′, z′)

[γ + γ′ + m2z2 + (1− z2)κ2]2
= iMg2 ∑

j

∫ ∞

0
dγ′

∫ 1

−1
dz′Lij(γ, z; γ′z′)gj(γ, z′), (10)

which are solved for the coupling constant g2 and the Nakanishi weight functions gi.

Once the gi’s are known physical observables can be calculated as integrals over these
functions.
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Three-body model for the proton

1

2

3

Γ

1

2

3

Γ
2

V12

Three spinless particles of mass m. Spectator + pair of interacting particles. Factor of two due
to symmetry of wave function with respect to exchange of the particles.

In the present work a zero-range interaction with four-leg-vertex iλ used. Then, for the
two-body amplitude (see figure)

iF (M2
12)) = iλ + (iλ)2B + (iλ)3B2 + ... =

1
(iλ)−1 −B(M2

12)
(11)

with the bubble diagram

B(M2
12) =

∫ d4k
(2π)4

i
(k2 −m2 + iε)

i
[(k− P)2 −m2 + iε]

, (12)

where M2
12 = P2. The bubble diagram regularized by assuming a pole in the scattering

amplitude.
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Valence LF integral equation for the proton

The valence three-body LF equation given by [1, 2]:

Γ(x, k⊥) =
F (M2

12)

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0
d2k′⊥

[ 1
M2

0 −M2
N
− 1

M2
0 + µ2

]
Γ(x′ , k′⊥) (13)

where µ is a cut-off, k⊥ transverse momentum and x momentum fraction of spectator.
Furthemore, the squared free three-body mass

M2
0 = (k′2⊥ + m2)/x′ + (k2

⊥ + m2)/x + ((k′⊥ + k⊥)2 + m2)/(1− x− x′) (14)

The three-body valence LF wave function is given by

Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥) =
Γ(x1,~k1⊥) + Γ(x2,~k2⊥) + Γ(x3,~k3⊥)√

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))
, (15)

where due to momentum conservation: x3 = 1− x2 − x3 and~k3⊥ = −~k1⊥ −~k2⊥.

[1] J. Carbonell and V.A. Karmanov, PRC 67 (2003) 037001

[2] T. Frederico, PLB 282 (1992) 409
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Results for the pion: Static properties

Set m (MeV) B/m µ/m Λ/m Pval P↑↓ P↑↑ fπ (MeV)
I 187 1.25 0.15 2 0.64 0.55 0.09 77
II 255 1.45 1.5 1 0.65 0.55 0.10 112
III 255 1.45 2 1 0.66 0.56 0.11 117
IV 215 1.35 2 1 0.67 0.57 0.11 98
V 187 1.25 2 1 0.67 0.56 0.11 84
VI 255 1.45 2.5 1 0.68 0.56 0.11 122
VII 255 1.45 2.5 1.1 0.69 0.56 0.12 127

VIII 255 1.45 2.5 1.2 0.70 0.57 0.13 130
IX 255 1.45 1 2 0.70 0.57 0.14 134
X 215 1.35 1 2 0.71 0.57 0.14 112
XI 187 1.25 1 2 0.71 0.58 0.14 96

Parameters: B (binding energy), µ (gluon mass), Λ.

The set VIII gives an fπ in good agreement with the experimental value.

The valence probability is 64-71%, i.e. rather large contributions beyond the valence
component.
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Pion electromagnetic form factors

In impulse approximation, with bare photon vertex iγµ,

(p + p′)µF(Q2) = −i
Nc

4M2 + Q2

∫ d4k
(2π)4 Tr[(−/k−m)Φ̄2(k2; p′)(/p + /p′)Φ1(k1; p)], (16)

where Q2 = −(p− p′)2.
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V. Tadevosyan et al

J. Volmer et al

B/m = 1.45, µ/m = 2.5, Λ/m = 1.2

Valence B/m = 1.45, µ/m = 2.5, Λ/m = 1.2

B/m = 1.35, µ/m = 2.0, Λ/m = 1.0

Valence B/m = 1.35, µ/m = 2.0, Λ/m = 1.0

We have a good agreement with experimental data for all Q2.

At large values of Q2 the valence contribution dominates.
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Emperical access to the PDF

The PDF gives the probability distribution amplitude for a quark to have a certain
momentum fraction x within the pion/proton.

Information about the PDF can be obtained from e.g. deep inelastic scattering

e + p −→ e + X, (17)

where X is undetected.

The differential cross section is of the form

dσ

dxdQ2 ∼ ∑
i=q,g

∫ 1

x

dz
z

Ci(z, Q2)fi/p(x/z, Q2), (18)

with the sum running over active quark flavors and gluon and fi/p the corresponding PDF.
The coefficient functions Ci is obtained from perturbative QCD.
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PDF evolution

For the comparison with other frameworks and/or experimental data the PDF should be
evolved from the model scale to a higher scale.

This is done by using the DGLAP equation

dq
d log Q2 =

αs(Q2)

2π

∫ 1

x
P(x/y, αs(Q)2)q(y, Q2) (19)

We will use the effective coupling (EPJC 80 (2020) 1064):

αs(k2) =
γmπ

log[K2(k2)/Λ2
QCD]

, K2(y) = (a2
0 + a1y + y2)/(b0 + y) (20)

The initial scale is given by the hadron scale Q0 = 0.330± 0.03 GeV.
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Pion PDF at Q2 = 27 GeV2
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Left panel; Results of this work compared with two sets of experimental data. Our results in
good agreement with the so-called res-summed data (black squares), predicting
u(ξ) ∼ (1− x)2 as x→ 1.

Right panel; Shaded Area: Lattice QCD (PRD 104 05404), solid line: (this work), dotted line:
BLFQ (PRD 101 034024), dashed line: DSE (EPJA 58 10), dashed-dotted line: DSE (PRL 124
042002).
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Electromagnetic form factor of the proton

The valence contribution to the Dirac form factor is obtained from the matrix element of γ+.
In the frame q+ = 0 and q2 = −Q2 = −q2

⊥ it is given by

F1(Q2) =

{
3

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

3

∑
i=1

xi

)
δ

(
3

∑
i=1

~kf
i⊥

)
Ψ†

3(x1,~kf
1⊥, ...)Ψ3(x1,~ki

1⊥, ...),

(21)
where Q2 =~q⊥ ·~q⊥ and the magnitudes of the momenta read∣∣∣~kf(i)

i⊥

∣∣∣2 =
∣∣∣~ki⊥ ±

~q⊥
2

xi

∣∣∣2 =~k2
i⊥ +

Q2

4
x2

i ±~ki⊥ ·~q⊥xi (i = 1, 2), (22)

and ∣∣∣~kf(i)
3⊥

∣∣∣2 =
∣∣∣±~q⊥

2
(x3 − 1)−~k1⊥ −~k2⊥

∣∣∣2 =

(1− x3)
2 Q2

4
± (1− x3)~q⊥ · (~k1⊥ +~k2⊥) + (~k1⊥ +~k2⊥)

2.
(23)
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Fit exp. data, Z. Ye et al

a = 2.7/m, m = 366 MeV, mu = 1.0 m

a = 3.5/m, m = 352 MeV, mu = 2.0 m

a = 5.0/m, m = 343 MeV, mu = 3.0 m

a = 9.0/m, m = 335 MeV, mu = 4.0 m

In figure Q2F(Q2) for different values of a and µ compared with fit to exp. data by Z. Ye et al
[1].

Best agreement obtained for a ≈ 1.46 fm and µ = m = 366 MeV, and this parameters will be
used in the following.

Fair agreement with exp. data for Q2 < 5 GeV2 but for larger values of Q2 they deviate,
presumably due to lack of a finite-range interaction.

Z. Ye et al, PLB 777 (2018) 8.
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Parton distribution function at model scale

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

C
o

n
tr

ib
u

ti
o

n
x1

I11

I22 + I33

I12 + I13

I23

Total

The single parton distribution function (PDF), is the integrand of the form factor at Q2 = 0,
i.e.

f1(x1) =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥ |Ψ3(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥)|2 = I11 + I22 + I33 + I12 + I13 + I23.

(24)
with the Faddeev contributions

Iii =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ2(xi,~ki⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥))2

Iij =
2

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ(xi,~ki⊥)Γ(xj,~kj⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥))2
; i 6= j.

(25)

The PDF at model scale is peaked around x = 1/3 and quite narrow. None of the Faddeev
contributions are negligble.
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Proton PDF at Q = 3.097 GeV
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Colored areas: Computed u and d-quark xpdfs at Q = 3.097 GeV with the areas
corresponding to the uncertainty in initial scale Q0 = 0.330± 0.03 GeV.
Dash-dotted lines: Results from quark-diquark by Y. Lu et al [1]. Reasonable agreement.
Disagreement at large x probably due to the use of contact interaction in our model.
Dashed-lines: Basis Light-front Quantization (BLFQ) [1] but evolved using same framework
as in this work. Only good agreement for small x.
Dotted lines: Results from the NNPDF 4.0 global fit. None of the models agree well with
these results.
A few remarks:

Model of this work and the one by Y. Lu et al, are both quark-diquark models, but the latter one has
also axial-vector diquark and a more realistic quark-quark interaction.
The BLFQ which is a Hamiltonian approach include (at least effectively) confinement, which is
lacking in the two other models.

[1] arXiv:2203.00753 [hep-th], [2] PRD 104, 094036 (2021), [3] arXiv:2109.02653 [hep-ph]
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The valence double parton distribution function (DPDF) is given by

D3(x1, x2;~η⊥) =
1

(2π)6

∫
d2k1⊥d2k2⊥

×Ψ†
3(x1,~k1⊥ +~η⊥ ; x2,~k2⊥ −~η⊥ ; x3,~k3⊥)Ψ3(x1,~k1⊥ ; x2,~k2⊥ ; x3,~k3⊥).

(26)

Fourier transform of D3(x1, x2,~η⊥) in ~η⊥ gives the probability of finding the quarks 1 and 2
with momentum fractions x1 and x2 at a relative distance~y⊥ within the proton.

In the figure is shown results for η⊥ = 0, showing a distribution centered around
x1 = x2 = 1/3.
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Conclusions

The pion and proton have been studied in Minkowski space.

For the pion we have a good agreement with experimental data for both the EM form factor
and the PDF.

Currently, we are attempting to compute tranverse momentum distributions.

Our present model for the nucleon is much more simple.

Spin degree freedom and a more realistic interaction should be included in the future. Also,
we will attempt to go beyond the valence approximation.
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