Reactions with relativistic radioactive beams (R³B) in NUSTAR

Andreas Heinz for the R³B collaboration

Radioactive beams at FAIR

Super-FRS: workhorse for NUSTAR

R³B: Reactions with relativistic radiatoactive beams

The general idea: collide radioactive beams with a secondary target for kinematically complete measurements - usually in inverse kinematics.

This requires:

Incomming particle ID => tracking, ΔE and ToF detectors.

Gammas, protons, neutrons around the target => CALIFA

Identify reaction fragments => GLAD, tracking detectors, ToF wall

Neutrons in forward direction =>**NeuLAND**

Protons in forward direction => mRPC (Resistive Plate Chamber)

The R³B setup in 2022

Example for beam and secondary fragment identification

"Coctail beams" allow for better use of the available beam intensity. Advantage at 1 GeV/u: fully-stripped ions

Many outgoing fragments: identification is crucial for complete-kinematics experiments.

Example from S509 in 2022

10° 60 65 70 75 80 85 90 95 ToF

5 354

2.147

10²

10¹

FOOT: Tracking of beam and reaction products

- HAMAMATSU single-sided sensors, 150 μm thick.
- Active area 96 x 96 cm².
- Number of readout channels: 640 per detector.
- Rates up to 10 kHz.
- Water cooling.

FOOT: FragmentatiOn Of Target

Two-arm FOOT configuration in 2022

Quasi-free scatting

Quasi-free scattering is in many ways the "work horse" reaction of R³B and many other labs. => LH₂ target

Idea:

Remove, selectively, one nucleon.

Obtain, e.g. spectroscopic factors; populate a well-defined state.

Ensure that multiple scattering is limited -> measure at minium of nn cross section.

V. Panin et al., PLB 753, 204 (2016)

Quenching of single-particle strength

Phys. 118, 103847 (2021)

Example for oxygen isotopes.

Direct reactions and quasi-free scattering, (p,2p) or (p,pn), show consistently no (or a weak) dependence on the difference of p and n separation energies – in contrast to (inclusive) reactions with HI targets at intermediate energies.

Short-range correlations

Short-range correlations can be probed using (p,2pp), (p,2pn) reactions over a larger range of isospin.

CALIFA - calorimeter

~2500 scintillator crystals (CsI) with APD readout

	Intrinsic photopeak efficiency	40% (up to E _¥ =15 MeV projectile frame)
alorimet	Gamma sum energy resolution Δ(E _γ sum)/<(E _γ sum)>	< 10% for 5 γ rays of 3 MeV
	Calorimeter for high energy Light charged particles	Up to 320 MeV in lab system
the second s	Gamma energy resolution	~5-6% (FWHM at E ₇ =1 MeV)
	Light charged particles resolution	~2%
	Proton-y ray separation	For 1 to 30 MeV

NeuLAND (2022)

13 double planes with 2 x 50 scintillator bars, each

Able to reconstruct 4momenta of multiple neutron hits

Detecting relativistic neutrons

QGSP_INCLXX_HP		QGSP_BERT_HP			
	Reaction products	[%]		Reaction products	[%]
1	$n+n+p+d+\alpha+\alpha$	7.7	1	$n + p + {}^{11}B$	9.8
2	$n+n+n+p+p+\alpha+\alpha$	6.7	2	$n+n+n+p+p+\alpha+\alpha$	9.1
3	$n + p + {}^{11}B$	4.9	3	$n + n + {}^{11}C$	7.8
4	$n + n + {}^{11}C$	4.4	4	$n + n + p + {}^{10}B$	4.1
5	$n+n+n+p+p+d+d+\alpha$	2.7	5	$n+n+p+d+\alpha+\alpha$	4.0
6	$n + \alpha + \alpha + \alpha$	2.3	6	$n + \alpha + \alpha + \alpha$	3.3
7	$n + p + \alpha + {}^{7}Li$	2.2	7	$n + p + {}^{11}C + \pi^{-}$	2.6
8	$n+n+p+\alpha+{}^{6}Li$	2.0	8	$n+n+p+p+p+\alpha+\alpha+\pi^{-}$	2.1
9	$n + n + p + {}^{10}B$	1.8	9	$n + {}^{12}C$	1.7
10	$n+n+n+n+p+p+p+d+\alpha$	1.8	10	$n+n+n+n+p+p+p+d+\alpha$	1.4

K. Boretzky et al., NIM A1014, 165705 (2021)

Many open reaction channels, typcially not all energy is deposited in the first interaction => measure neutron ToF, deposited energy and all hits within the volume to extract the neutron multiplicty.

<u>Nature</u> 606, 678–682 (2022)

Observation of a correlated free four-neutron system

- Studying 4n system at SAMURAI in RIKEN
 - With NeuLAND demonstrator (only 4 double planes)
 - 4n detection efficiency < 1%
 - · Indirect observation through missing-mass measurements
- Possibility to study 4n at R3B using full NeuLAND
 - 4n efficiency > 30% with 13 DP (>70% with 30 DP)
 - Direct observation of 4n is possible combining invariant-mass and

missing-mass measurements

Contents lists available at ScienceDirect Nuclear Inst. and Methods in Physics Research, A

K. Boretzky^{-*}, I. Gašparfé^{bag}, M. Heil⁺, J. Mayer⁺, A. Heinz⁺, C. Gasar^{+,}, D. Kresan^{+,}, H. Simon⁺, H. T. Bort⁺, S. Chakraborty⁺, M. Lohercin⁺, L.V. Chulkov⁺, M. Gobanu⁺, U. Dattal, E. De Filipo⁺, C. A. Duma⁺, J. Dreyer⁺, Z. Eldes⁺, J. Mater⁺, B. Gadariz⁺, M. E. Geracl⁺⁻, B. Gondfo^{-, M.}, K. Göbel⁺, V.L. Golovtsv⁺, D. Gonzalez Diate⁺⁺, N. Gruzinsky⁺, T. Heftrich⁺, H. Heggen⁺, J. Henne⁺, T. Hesne⁺, E. Hoeman⁺, M. Holl⁺, A. Horvat⁺, A. Horvath⁺, G. Icker⁺, D. Jelavić Malenica⁺, H. H. Johansson⁺, B. Jonson⁺, J. Kahlbow⁺, N. Kalantar-Nayestanaki⁺⁻, A. Kellé-Hell⁺, M. Kempe⁺⁻, N. Koch⁺, N.G. Kozlenko⁺, A. G. Krivalich⁺, N. Kurz⁺, V. Kametov⁺, C. Lange⁺⁻, Y. Leife⁺, J. Lihtar⁺, B. Löher⁺, J. Machado⁺, N.S. Martorana^{+, K}, Mikl⁺, T. Nilsson⁺, E.M. Orischin⁺, Z. Kyagano⁺, J. Shernon⁺, G. Folli⁺⁻, P. M. Poole⁺, A. Rahama, R. Reifarth⁺, C. Gigolle⁺, M. Roder⁺, D.M. Rossi⁺, P. Russotto⁺, D. Savara⁺, H. Scheit⁺, F. Schniflee⁺, D. Stach⁺, E. Stan⁺, J. Shorwali Gli⁺, P. Teubl⁺, W. Irimarch⁺, D. Vakorev⁺, L. Zanetti⁺, A. Zilges⁺, K. Zuber⁺, for the R⁺B collaboration

4n detection efficiencies with 12 double-planes

20	200		generated			
Me	eV	1	2	3	4	5
	0	41	16	6	2	
Ч	1	51	39	22	11	
cte	2	8	33	34	25	
ete	3	0	11	28	32	
đ	4	0	0	10	31	

4n detection efficiencies with 30 double-planes

200		Gene	Generated			
MeV		1	2	3	4	
	0	7	0	0	0	
detected	1	90	28	5	1	
	2	3	58	24	5	
	3	0	13	48	22	
	4	0	0	23	72	

N-n correlations

Use (p,2p) reactions to remove deeply bound protons. As a result 2 neutrons can end up in the continuum.

Study the 2 neutron decay: are there correlations?

counts 50-Counts Sequential Phase space 0 0.5 0.5 0.5 0.5 SIMULATION 10 ma mm ma min Direct + Counts Direct Counts sequential 50 50 0.5 0.5 0.5 0.5 10 10 m2 min mann min 20O* 16C+n+n 18O+n+n 5.3 < E, < 7.2 MeV 7.2 < E, < 12 MeV (e) EXPERIMENT (f) Counts 50 50 0.5 0.5 0.5 0.5 10 10 min ma ma min

A. Revel et al., Phys. Rev. Lett. 120, 152504 (2018)

The R³B setup in Phase-0*

- S444 Detection system commissioning
- S467 Single-particle structure of Ca isotopes
- Test runs with proton and ²⁰⁸Pb beams

- S455 Fission studies @R3B (next talk by Jose Benlliure)
- S515 Constraining energy-density functionals and the density-dependence of the symmetry energy
- S494 Coulomb dissociation of ¹⁶O into ¹²C and ⁴He.

Test run with ¹²C beam

S522 First characterization of Short-Range Correlations in exotic nuclei

S509 Study of multi-neutron correlations in drip-line nuclei.

2020

- CALIFA Barrel
- NeuLAND 8 double-planes
- SOFIA tracking detectors
- R3BMusic
- Solid targets (CH2, Pb, C)

- CALIFA iPHOS
- NeuLAND 12 double-planes
- New fiber detectors
- AMS silicon trackers
- 15 mm LH2 target, solid targets

- Neuland 13 double planes
- RPC behind GLAD
- New FOOT silicon trackers
- 50 mm LH2 target

* Phase-0 refers to experiments using FAIR detector systems but a the GSI accelerator facility

2021

SOFIA* – Fission studies at R³B

Conclusions

- R³B investigates reactions of unstable beams at relativistic energies in complete kinematics.
- This requires separated radioactive beams from the FRS or Super-FRS.
- The setup is very versatile.
- A broad physics program includes studies of the evolution of nuclear shell structure, short-range correlations, nuclear fission
- A unique set of detectors allows for those studies.
- High secondary beam energies are often mandatory.