IHEP Site Report

LU WANG, LU.WANG@IHEP.AC.CN ON BEHALF OF COMPUTING CENTER, IHEP HEPIX FALL 2022

Outline

- Brief Introduction
- Computing platform
 - Computing
 - Storage
 - Network
- Supports and R&Ds
- Summary

Brief Introduction

52.8 K CPU cores, 210 GPU cards to for more than 10 experiments

- HTCondor cluster runs for HTC jobs (38K CPU cores)
- Slurm cluster runs for HPC jobs (10K CPU cores + 210 GPU)
- Distributed computing, WLCG, DIRAC etc., (4.8K CPU cores)

•76.4 PB disk storage, 51.8 PB tape storage

- Lustre (30.4 PB, POSIX) and EOS (46 PB, XRootD, +7.6 PB)
- Castor for tape storage (19 PB, will be retired)
- EOSCTA for tape storage (32.8 PB, +9.8 PB)
- Network
 - TPV4/ TPV6 dual stack
 - Ethernet / IB protocols supported
 - LHCONE member
 - WAN Bandwidth: 40Gbps (LHCONE 20Gbps)

Chinese local or IHEP driven

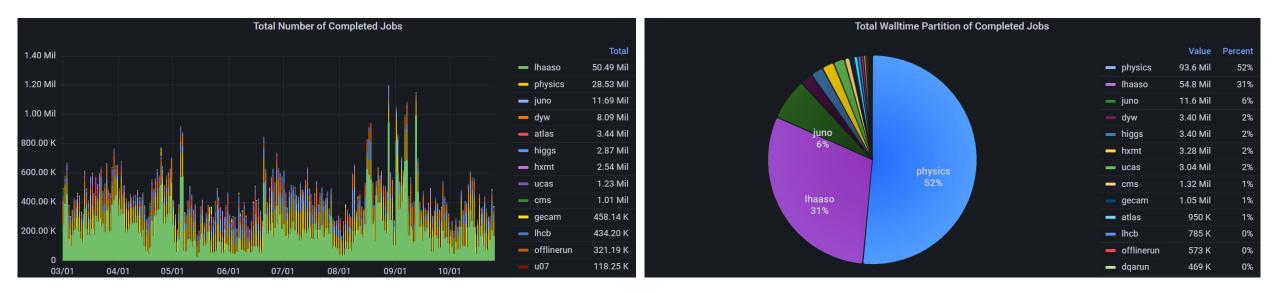
BESIII (Beijing Spectrometer III at BECPII)

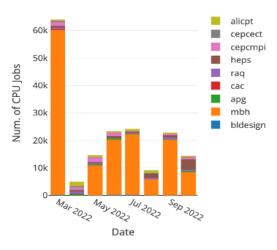
JUNO (Jiangmeng Underground Neutrino Observatory)

HXMT(Hard X-Ray Moderate Telescope)

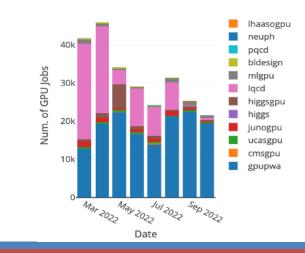
LHAASO (Large High Altitude Air Shower Observatory)

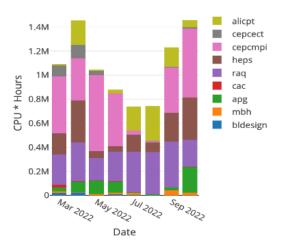
HEPS (High Energy Photon Source)

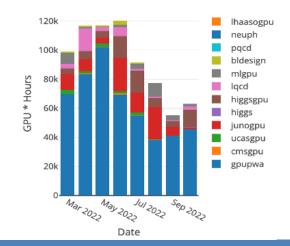

International collaborated


HTCondor/dHTC

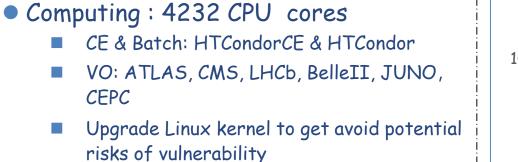
- Job Statistics (2022.3-2022.10)
- Total Job Number: 111,503,370 Jobs
- Total Walltime in hours: 179,153,459 CPU Hours

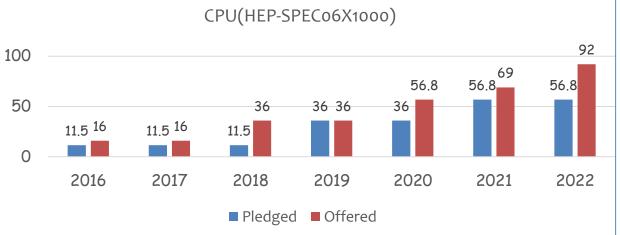

Slurm Cluster Status

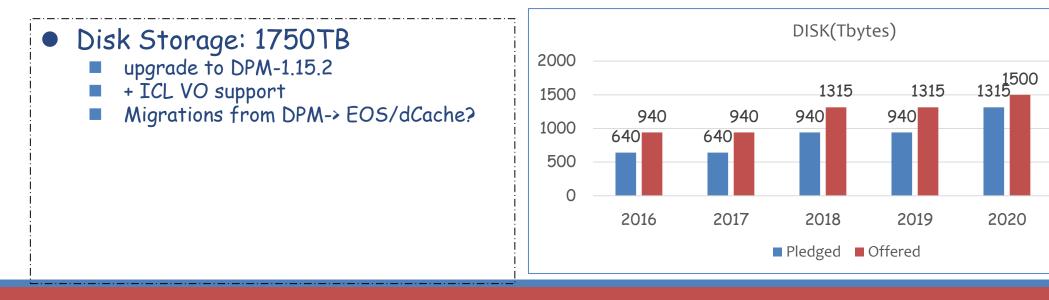

- Resources:
 - 228 worker nodes
 - ~ 10K CPU cores, 210 GPU cards
- 9 CPU APPs, 11 GPU APPs
- Job Statistics (since 2022.03):
 - 177.2K CPU jobs, 8.7M CPU Hours
 - 253.2K GPU jobs, 742.7K GPU Hours


Num. of CPU Jobs of CPU_APP groups

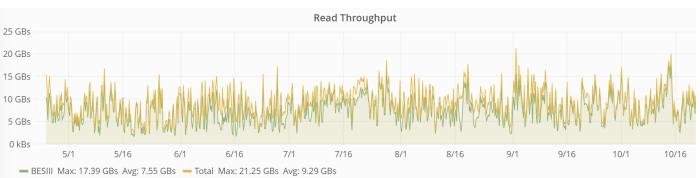
Num. of GPU Jobs of GPU_APP groups

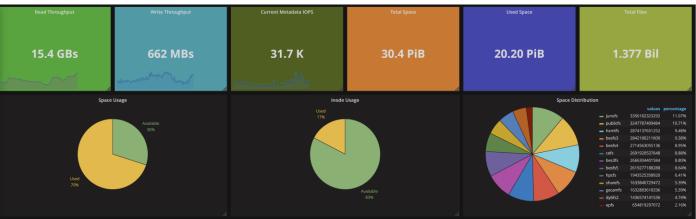


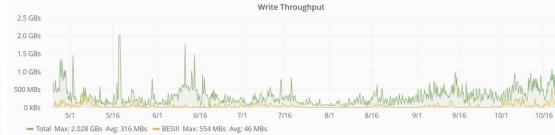

GPU Hours of GPU_APP groups

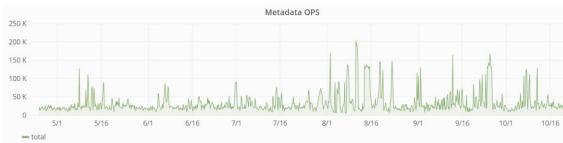


BEIJING-LCG2 Tier2

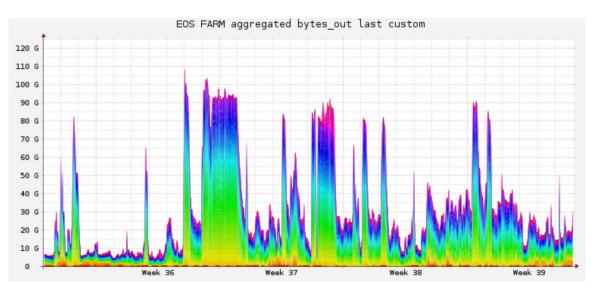







Disk Storage: Lustre

- Software: community Lustre (2.12.5)
 - 21 instances(+2 new , -1 retired)
 - +2PB capacity, +112M files
 - Read: 9.29 GB/s avg, 21.21 GB/s peak
 - Write: 316 MB/s avg, 2 GB/s peak
 - Metadata OPS: 18.2k avg, 192k peak



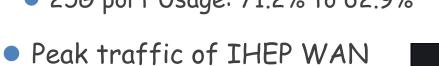
Disk Storage: EOS

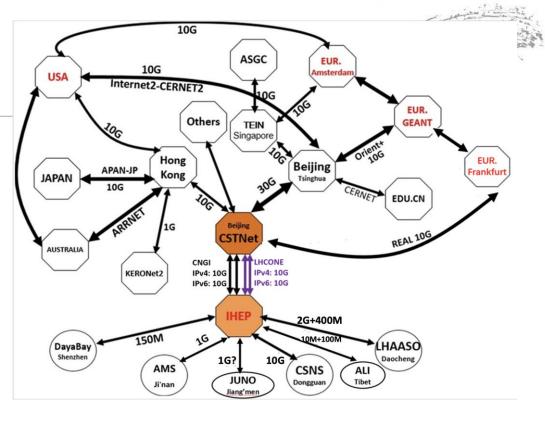
5 instances, 4 for physics experiments, 1 for Box
Main data storage for LHAASO and JUNO

Raw Capacity	~ 46 PB	
Disk server	~110	
Number of EOS fs	3465	
Number of files	~555 (<mark>+33</mark>)Mil	
Number of directories	~15Mil	
Peak Read throughput	~110(+30)GB/s	

Tape Storage: EOS CTA

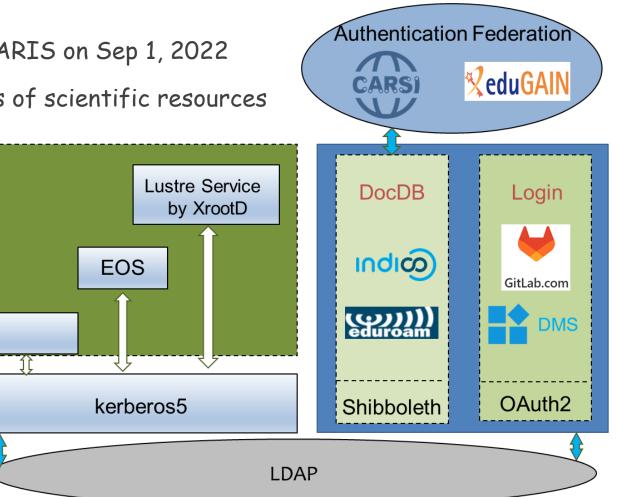
- Current Status
 - 18.14 PB used / 32.8 PB in total
- Serving LHAASO, DYB, YBJ, HXMT and BESIII
- New tape Library for JUNO experiment
 LENOVO/IBM TS4500
 - •6 frames, 3 LTO9 drives
 - •120 tapes
- Data Migration from Castor to CTA


	Total	Completed	Completion Rate
BESIII	2.5 PB	1.3 PB	52%
DYW	1.2 PB	1.2 PB	100%
YBJ	525 TB	504 TB	96%


Network

- Upgrade the bandwidth between IHEP and CSNS
 - To support future JUNO raw data transferring
 - Bandwidth 5Gbps → 10Gbps
- Upgrade data center network
 - Backbone bandwidth: 800Gbps(Storage),600G(compute)
 - Added 25G TOR switches: count (14 \rightarrow 19)
 - 25G port Usage: 71.2% to 62.9%

- Incoming: 14.5 Gbps
- Outgoing: 14 Gbps

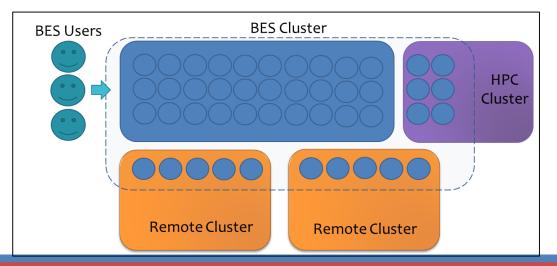


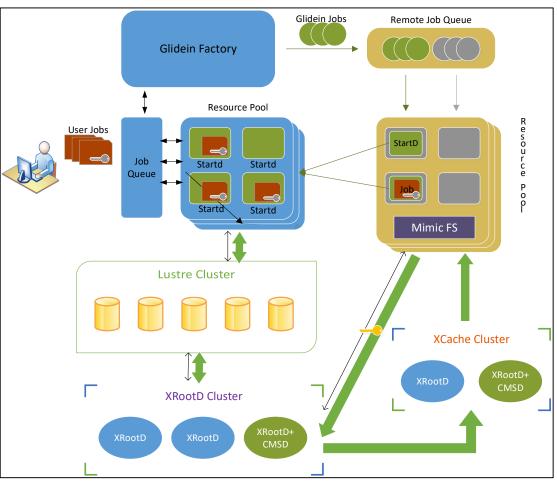
- •IHEP joined eduGAIN identity federation through CARIS on Sep 1, 2022
- IHEP SSO users benefited a lot from the easy access of scientific resources via eduGAiN
 - 21000 user accounts
 - 200 OAuth applications

eduGAIN

- 160 collaborations
- 120 cluster groups
- •Next step, external users will be allowed to sign-on

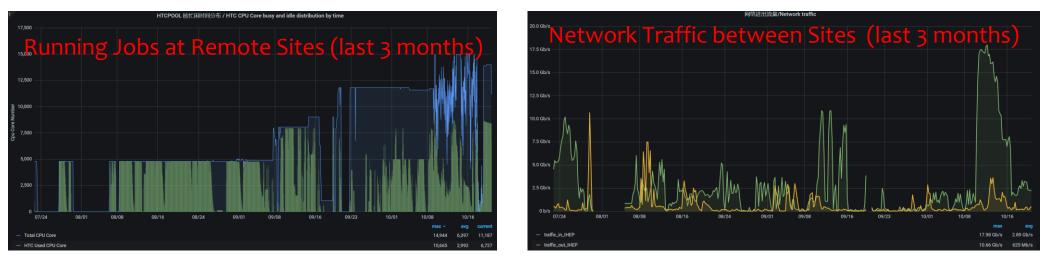
some IHEP web services via eduGAIN
Indico, DocDB ...




One Platform, Multi-Centers (I/2)

- OPMC aims to extend the IHEP-CC site by integrating the domestic distributed resources
 - Remote Resources: 8K X86 Cores, 10K ARM Cores
 - HTCondor Glidein (Scheduling & Resource Mgmt.)
 - Home-developed Mimicfs (POSIX Data Access)
 - XRootD Cluster (Lustre exportation)
 - XCache Cluster (remote read-only data cache)

• Kerberos tokens (user mapping and authentication)



One Platform, Multi-centers (2/2)

Simulation jobs with small I/Os can be transparently scheduled to the remote sites
 BESIII、LHAASO and HERD experiments, typical I/O of O(10) KB/s

Scheduling of BESIII reconstruction jobs to is under development

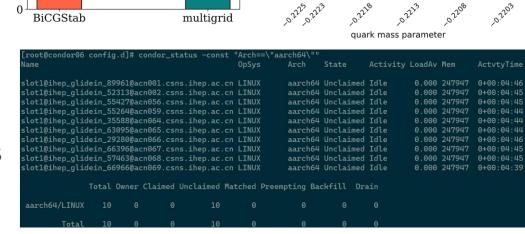
- concatenating the simulation and reconstruction stages into one job to reduce network traffics of intermediated data
- Cache the Random Trigger files on remote site to improve reconstruction performance

R&D: Simulations on the ARM architecture

- The largest ARM computing cluster in HEP at DongGuan, Guangdong
 - Huawei Taishan 200K server with Kunpeng 920 CPU
 - 100 worker nodes & ~10K CPU cores
 - 100 Gb RoCE interconnection
- Lattice QCD
 - 3.6x speed up of LQCD simulation with multigrid algorithm
 - Another 20% performance improvement with matrix multiplication compression and NEON vectorization
 - Test->Operation
 - 4136 jobs, 2508376.5 machine hours, 200TB data was generated
- Data Simulation of HERD Experiment (newly added)
 - Software libs have been compiled on ARM archtecture and published in CVMFS
 - Jobs can be automatically forwarded to Dongguan site through HepJob
 - Transparent data I/O through the Mimicfs to Lustre fs at IHEP

(spuo

9 9 225

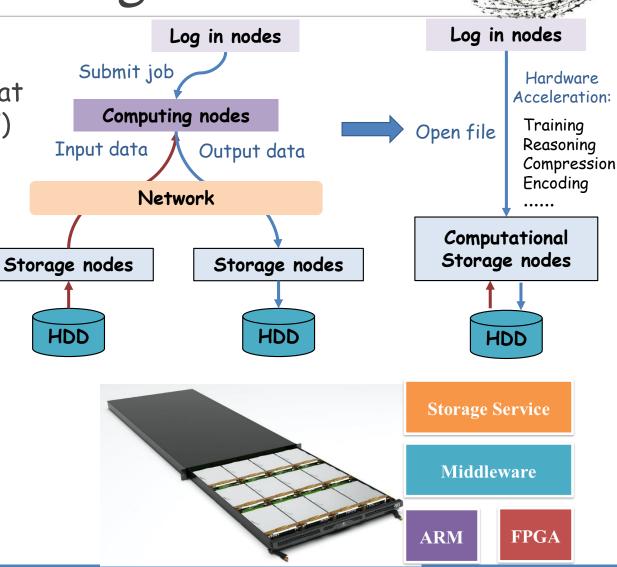

G 200

to soluti

E 125

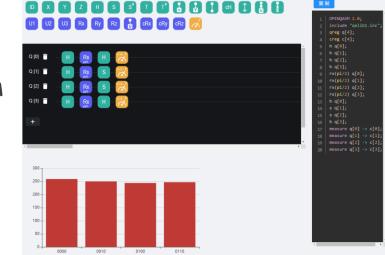
3.6倍

Time (h)

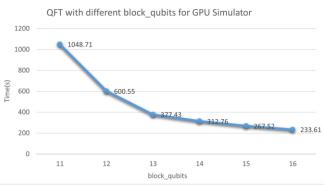


R&D: Computational Storage

•<u>Computational Storage</u> is the architecture that provide Computational Storage Functions (CSF) coupled to storage, into order to offload host processing's or to reduce data movements.


•Status:

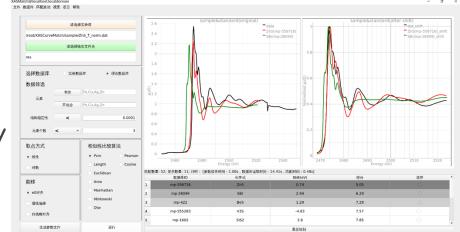
- Designed and customized a 1U server
 - Integration of ARM & FPGA
 - High density: 1U & 12 HDD
- Two applications are implemented
 - data processing of LHAASO: >10PB /year
 - Auto-Decoding & Data compression
 - Lossless compression of X-Ray CT image for HEPS: >100PB/year
 - CNN training\reasoning, Huffman encoding

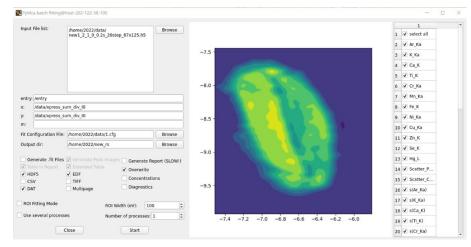


R&D: Quantum Computing Simulation Platform

- A distributed heterogeneous interactive platform to facilitie the explorations of quantum algorithms in multiple experiments
 - L-QCD, CEPC, BESIII ...
- Jupyter-based Interactive Developing & Analysis Platform
 - supports simulators like IBM Qiskit, Google Cirq, D-Wave Solver...
 - Support CPU and GPU environment
 - Support interacting with Slurm Cluster (under development)
 - Unified user authentication with IHEP SSO
 - Drag-and-drop Programming Interface
 - Support basic quantum gates, and QASM translation
 - Heterogeneous Computing Cluster
 - Simulating up to **38** qubits on IHEP GPU Cluster
 - Support Qiskit with cuQuantum and OPENMPI enabled

R&Ds of HEPS




• HEPS, High Energy Photon Source, will be put into service in 2025

- Computing & Communication system (HEPSCC)
 - Network, Computing, Storage, Data analysis framework, Data management, Database & Public Service, Monitoring, Security

Data analysis framework(Under Development)

- Integrate methods and algorithms: Alphafold, PDFgetX3, PyMca
- Develop PyMca and X-ray absorption matching interface of Daisy workbench based on PyQt5
- Develop the PDF workflow based on PyFai and PDFgetX3
- Data management system(Finished)
 - develop data management module for 3-Tiers data storage (beamline storage → Central storage → Tape)
 - Data transfer module moves data between different storage media automatically

R&Ds of HERD

- A working group for the HERD distributed computing system was launched on August 2022.
 - It would serve data production and data insert checking to bookkeeping system in the HERD data flow.
 - The computing model is based on the DIRAC-Rucio Integration Model of BelleII experiment.
 - The Data management Policy would follow the policy of JUNO experiment.

R&D Status:

- •Rucio and DIRAC testbed was deployed, and test RSE and basic SE function was ensured.
- Customized HERD data policy has been finished.
- Data registering API tools for production with auto-registering and register-checking function is under developed.
- •DIRAC-Rucio integration is nearly finished.

Summary

- The Local cluster is running smoothly during last 6 months
 - increase of disk I/O throughput, extension of tape and network capacity according to experiment requirements
- Experiments have already benefited from project "One Platform, Multi-Centers"
 - BESIII, LHAASO and HERD simulation jobs can be scheduled to remote site without notification of users
- Simulations over the ARM computing cluster have seen performance improvements via adoptions of new algorithms
- Other R&D works are progressed as planed
 - Computational storage server and application
 - Quantum Computing Simulation Platform
 - Daisy & Data management system of HEPSCC
 - distributed computing system for HERD (newly launched since August)

Backup: Grid Sites: WLCG & DIRAC

Resources and operation: (03/2022-10/2022)

	ATLAS	CMS	LHCb	Bellell	JUNO
CPU cores	444	444	1680	576	576
Storage	400TB	684TB	375 TB	255 TB	820 TB
Jobs	81k	82.7K	325.7K	361 K	515K
CPU times	1,592k hours	1,105K hours	8,930 K hours	1,594K hours	811K hours
Upload	124TB	129.4 TB	2.81 PB	1.54 PB	47.1 TB
Download	108TB	88.5 TB	43.2 TB	67.0 TB	340 TB