Basic CAS @ online,

 May 2022Jörg Wenninger CERN Beams Department Operation group - LHC section

Copyright statement and speaker's release for video publishing

The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to broadcast them online to all registered students and to post them without any further processing on the CAS website.

The author hereby confirms that the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution.
Introduction
Imperfection - sources
Orbit perturbations
Optics perturbations
Linear imperfections and geology
Summary

Accelerator lattice cell

- An accelerator is typically build using a number of basic 'cells'.
- The cell layouts of accelerators come in many variants.
- For today we consider a simple FODO cell containing:
- Dipole magnets to bend the beams,
- Quadrupole magnets to focus the beams,
- Beam position monitors (BPM) to measure the beam position,
- Small dipole corrector magnets for beam steering.

Dipole magnet

- The dipole has two magnetic poles and generates a homogeneous field providing a constant force on all beam particles - used to deflect the beam.
- A dipole corrector is just a small version of such a magnet, dedicated to steer the beam.

Lorentz force:

$$
F=q \overrightarrow{\mathrm{v}} \times \vec{B}
$$

orthogonal to the speed and magnetic field directions

Horizontal deflection

90° rotation

Vertical deflection

Quadrupole magnet

- A quadrupole has 4 magnetic poles.
- A quadrupole provides a field (force) that increases linearly with the distance to the quadrupole centre - provides focussing of the beam.
- Similar to an optical lens, but a quadrupole is focussing in one plane, defocussing in the other plane.

Skew quadrupole magnet

- A quadrupole rotated by 45 ('skew quadrupole') produces a force (deflection) in x that depends on y and vice-versa: such a magnet couples horizontal and vertical plane.

skew quadrupole

$$
F_{x}=-k x \underset{\substack{\text { No mixing of } \\ \text { planes }}}{ }
$$

$$
\begin{array}{ll}
\begin{array}{l}
\text { Full mixing } \\
\text { of planes }
\end{array} & F_{x}=k y \\
& F_{y}=-k x
\end{array}
$$

N-pole magnets

- The concept of normal / skew quadrupole can be applied to any 2N-pole magnet.
- Normal variant - generally referred to as B_{N},
- Skew variant - generally referred to as A_{N}, rotated by $180^{\circ} / 2 \mathrm{~N}$ wrt B_{N}.
- Examples:

Dipole $\mathbf{N}=1$
Sextupole N=3
$\longrightarrow \mid$

Recap on beam optics

- Quantities related to a beam optics in a circular accelerator will be needed for the lecture:
- The betatron function (β) that defines the beam envelope,
- Beam size / envelope is proportional to $\sqrt{ } \beta$
- The betatron phase advance (μ) that defines the phase of an oscillation.

Recap on beam optics

- Consider a particle moving in a section of the accelerator lattice. The focussing elements make it bounce back and forth.

- This periodic oscillation is called the betatron oscillation.

Recap on beam optics for pedestrians

- The number of oscillation periods over one machine turn is called the machine tune (Q) or betatron tune.
- In this example Q is around $2.75-2$ periods and $3 / 4$ of a period.

- With coordinate change (from longitudinal position in meters to betatron phase advance in degrees) this 'rocky' oscillation is transformed into a sinusoidal oscillation.
- Convenient and simple way to analyse the beam motion.

Introduction

Imperfection - sources

Orbit perturbations
Optics perturbations
Linear imperfections and geology
Summary

Imperfections

- The first step in the design phase of an accelerations consists in building an "ideal" accelerator where all magnets have nominal fields and are perfectly aligned along the design trajectory.
a But quite rapidly the designer must confront the real world, and tolerances on errors (= imperfections) must be defined to provide specifications for component design, manufacturing and alignment.
- What is the precision on field quality?
- What is the precision and stability of the power converter that feeds current into a magnet?
- What is the tolerance on the component alignment?
- ...
- This lecture will discuss the impact of the simplest form of imperfections, the linear imperfections.

From model to reality - fields

- The physical units of the machine model defined by the accelerator physicist must be converted into magnetic fields and eventually into currents for the power converters that feed the magnets.
- Imperfections (= errors) in the real accelerator optics can be introduced by uncertainties or errors on:
- Beam momentum, magnetic field model and power converter regulation.
Magnet
strength

(angle, focal
length...)

Magnetic field
or gradient
momentum

Example of the LHC main dipole calibration curve

From the lab to the tunnel

From model to reality - alignment

- To ensure that the accelerator elements are in the correct position the alignment must be precise to the level of micrometres for a linear collider like CLIC!
- At the CERN hadron machines we aim for accuracies of around 0.1-0.3 mm.
- The alignment process implies:
- Precise measurements of the magnetic axis in the laboratory with reference to the element alignment markers used by the survey group.
- Precise in-situ alignment (position and angle) of the element in the tunnel.
- Alignment errors are a common source of imperfections.

A good attitude in the tunnel

Please remember that accelerator components in the CERN tunnels are carefully aligned - please treat with respect !

Introduction
Imperfection - sources
Orbit perturbations
Optics perturbations
Linear imperfections and geology
Summary

Imperfection - undesired deflection

- Linear imperfections are the simplest form of machine errors involving dipole and quadrupole fields - let us start with dipole fields.
- The presence of an unintended deflection along the path of the beam is a first category of imperfections.
- This case is also in general the first one that is encountered when beam is first injected into a machine, or when a beam is launched into a linac.
- The dipole orbit corrector is added to the cell to compensate the effect of unintended deflections.
- With the orbit corrector we can generate a deflection of opposite sign and amplitude that compensates locally the imperfection.
- What causes an unintended deflection to appear?

Unintended deflection

- The first source is a field error (deflection error) of a dipole magnet.
- This can be due to an error in the magnet current or in the calibration table (measurement accuracy etc).
- The imperfect dipole can be expressed as a perfect one + a small error.

- A small rotation (misalignment) of a dipole magnet has the same effect, but in the other plane.

Unintended deflection

- The second source is a misalignment of a quadupole magnet.
- The misaligned quadrupole can be represented as a perfectly aligned quadrupole plus a small deflection.

Coupling

- A small rotation (misalignment) of a quadrupole leads to coupling between horizontal and vertical plane which is generally not desired.
- The rotated quadrupole can be represented as a perfectly aligned quadrupole plus a small skew quadrupole.
tilted quadrupole

ideal quadrupole

skew quadrupole

Effect of a deflection

- We set the machine tune to an integer value:
- $Q=n \in N$
- When the tune is an integer number, the deflections add up on every turn!
- The amplitudes diverge, the particles do not stay within the accelerator vacuum chamber.
- We just encountered our first resonance - the integer resonance that occurs when $\mathrm{Q}=\mathrm{n} \in \mathrm{N}$

Effect of a deflection

Particle direction

Turn no 1

Turn no 2

Turn no 3

Turn no 4

- We set the machine tune to a half integer value:
- $\mathrm{Q}=\mathrm{n}+0.5, \mathrm{n} \in \mathrm{N}$
- For half integer tune values, the deflections compensate on every other turn!
- The amplitudes are stable.
- This looks like a much better working point for Q !

Effect of a deflection

Turn no 1

Turn no 2

Turn no 3

- Also a reasonable working point for Q!

Turn no 4

- We set the machine tune to a quarter integer value:
- $Q=n+0.25, n \in N$
- For quarter tune values, the deflections compensate every four turns !
- The amplitudes are stable.
- Let's plot the 50 first turns on top of each other and change Q.
- All plots are on the same scale

$Q=n+0.1$

$Q=n+0.2$

- The particles oscillate around a stable mean value $(Q \neq n)$!
- The amplitude diverges as we approach $\mathrm{Q}=\mathrm{n} \rightarrow$ integer resonance
- The stable mean value around which the particles oscillate is called the closed orbit.
- Every particle in the beam oscillates around the closed orbit.
- As we have seen the closed orbit 'does not exist' when the tune is an integer value.
\square The general expression of the closed orbit $x(s)$ in the presence of a deflection θ is:

Closed orbit example

- Example of the horizontal closed orbit for a machine with tune $Q=6+q$.
- The kink at the location of the deflection $(\rightarrow$) can be used to localize the deflection (if it is not known) \rightarrow can be used for orbit correction.

A deflection at the LHC

- In the example below for the 26.7 km long LHC, there is one undesired deflection, leading to a perturbed closed orbit.

Where is the location of the deflection?

A deflection at the LHC

- To make our life easier we divide the position by $\sqrt{ } \beta(s)$ and replace the BPM index by its phase $\mu(\mathrm{s})$.

$$
\frac{x(s)}{\sqrt{\beta(s)}}=\frac{\sqrt{\beta_{\theta}} \cos \left(\left|\mu(s)-\mu_{\theta}\right|-\pi Q\right)}{2 \sin (\pi Q)} \theta \propto \cos \left(\left|\mu(s)-\mu_{\theta}\right|-\pi Q\right)
$$

Can you localize the deflection?

A more realistic case at LHC

- Now a more realistic orbit with 100's of deflections.

How do we proceed to correct?

Orbit correction

- Nowadays there are two main approaches for orbit correction:
- Matrix inversion algorithms relying on the knowledge the response $\mathbf{R (s)}$.
- $R(s)$ is measured or calculated.
- Popular algorithms: MICADO and SVD (Singular Value Decomposition), both come with many variants.
- Machine learning with a neural network that is trained to find a solution.
- The training may be based on data or on a model, or on continuous reward-like training.
- Inversion algorithms have the advantage of higher intrinsic flexibility (correction quality and flexibility, noise reduction,...), they can be reused at different machines without need for tuning - they are 'universal'.
- Machine learning based technique are adapted to situation where the models are difficult to establish, change over time, for example in low energy machines and some linacs. A model trained on a certain machine cannot be reused elsewhere.

Example of model inversion

- Preparation: a model of the machine has to be obtained, i.e. for each orbit corrector the expected orbit response $\mathrm{R}(\mathrm{s})$ has to be measured or computed.

Example of model inversion - MICADO

- The MICADO algorithm compares the response of every corrector with the raw orbit.

- MICADO picks out the corrector that hast the best match with the orbit, and that will give the largest improvement to the orbit deviation rms.
- The procedure can be iterated until the orbit is good enough (or as good as it can be).

LHC orbit correction example

- The raw orbit at the LHC can have huge errors, but the correction (based partly on MICADO) brings the deviations down by more than a factor 20.

At the LHC a good orbit correction is vital !
Introduction
Imperfection - sources
Orbit perturbations
Optics perturbations
Linear imperfections and geology
Summary

Quadrupole gradient errors

- What is the impact of a quadrupole gradient error?
- Let us consider a particle oscillating in the lattice.

Too strong gradient / lens

The oscillation period is affected \rightarrow change of tune, here Q increases !

Optics perturbation

- In a ring a focussing error affects the beam optics and envelope (size) over the entire ring ! It also changes the tune.

Example for LHC: one quadrupole gradient is incorrect

Zoom into a subsection

Optics perturbation

- The local beam optics perturbation... note the oscillating pattern of the error.

- The error is easier to analyse and diagnose if one considers the ratio of the betatron function perturbed/nominal.
- The ratio reveals an oscillating pattern called the betatron function beating ('beta-beating'). The amplitude of the perturbation is the same all over the ring !

Optics perturbation

- The beta-beating pattern comes out more clearly when the longitudinal coordinate is again replaced by the betatron phase advance.
- The result is very similar to the case of the closed orbit kick, the error reveals itself by a kink !
- Watching closely one can observe that there are two oscillation periods per $2 \pi(360 \mathrm{deg})$ phase. The betabeating frequency is twice the frequency of the orbit !

LHC optics correction

- Correction strategies for optics / beta-beating rely on similar principles than for orbit correction.
- Inversion algorithms - it is possible to iteratively use the similar algorithms than for orbit correction, although good optics corrections require a larger variety of analysis/fitting tools.
- Machine learning.
- Example for optics correction: at top energy of 6.5 TeV, the LHC optics errors cam be as large as 100\% before correction.
- Can be corrected to a few \% residual error with modern correction algorithms if there are enough quadrupoles that can be individual powered.

Introduction
Imperfection = sources
Orbit perturbations
Optics perturbations
Linear imperfections and geology
Summary

Linear imperfections, geology and celestial bodies

Earth tides

Tide bulge of a celestial body of mass M at a

 distance $d$$$
\Delta R \sim \frac{M}{2 d^{3}}\left(3 \cos ^{2} \theta-1\right) \quad \begin{aligned}
& \theta=\text { angle(vertical, the } \\
& \text { celestial body) }
\end{aligned}
$$

induces surface deformations and affects the water levels of the oceans.
\rightarrow impacts the alignment of a large accelerator!

Such Earth tides alter the accelerator circumference:

- The Moon contributes $2 / 3$, the Sun $1 / 3$
- Not resonance-driven (unlike Sea tides !).
- Accurate predictions possible (~\%).

LEP tide predictions for Nov. 1992

The relative circumference change amounts to $\sim 10^{-8} \sim 1 \mathrm{~mm}$ - resolution ~ $\mathbf{1 0}^{-11}$

Gravitational wave detectors achieve sensitivities of $\sim 10^{-21}$!

- At the LHC the beams are 'captured' by the RF system which forces the beams to remain synchronous with the RF frequency.
- Because at LHC the speed $\cong \mathrm{c}=$ constant, this fixes the length of the orbit.
- When the frequency is well adjusted, the length of the orbit L matches the circumference \boldsymbol{C}.
- If for any reason \boldsymbol{C} varies, the beam has to move radially if L is kept constant.
- A mismatch between \boldsymbol{C} and L can be observed on the mean radial orbit using the BPMs that move with the ring.
- As a side effect it also changes very slightly the beam energy (level of 0.01%).

LHC circumference observations

- Tides are observed very clearly on the LHC circumference by measuring the mean radial (=horizontal) beam position.

Waves from earthquakes

Different types of body (Pressure, Shear) and surface waves (Raleigh, Love), multiple paths and reflections produce a complex signature of earthquakes at seismic measurement stations - also at the LHC.

Costa Rica earthquake - 2012

\square A magnitude 7.6 earthquake in Costa Rica (05/09/2012 @ 14:42:10 UTC) 'struck' the LHC in fill 3032 with stable colliding beams.

- Arrival of the first waves at CERN ~15:06 UTC.

- The arrival of the different waves can be observed on the radial beam position - equivalent to largest tides.

... and there's the man-made waves

- HL-LHC has built huge underground structures in LHC points 1 and 5 .
- Civil engineering is not famous for working 'quietly' !
- Noise also means vibrations, vibrations mean moving magnets !

- In the early part of the CE work, an important volume of soil was moved around and compacted while LHC was operating.
- Ground compactors compact soil by... vibrating.
- ...and they managed to shake the beams colliding at the IP ~100 m underground.

Mechanism:

- The vibrations with frequencies $\mathbf{\sim} \mathbf{2 0} \mathbf{~ H z}$ were transmitted through 100 m of rock to the tunnel magnets and their supports that resonate in the frequency range $8-22 \mathrm{~Hz}$.
- The resonant excitation generated ~ micrometer amplitude beam movements that were clearly visible on the CMS experiments luminosity (= rate of collisions).

- At first order magnetic field and misalignments errors of accelerator components induce:
- Errors on the beam orbit,
- Errors on the optics and the tune.
- The errors are often sufficiently large that modern machines operate poorly or not at all.
- Fortunately ever improving tools and algorithms have been developed over the past 50 years to correct such errors.
- However to minimize the imperfections from the start it is important to have:
- the best possible magnet (component) design,
- well measured magnetic fields,
- precise power converters,
- the best possible machine alignment.

Thank you for your perfect attention!

