Introduction to

 "Transverse Beam Dynamics"
Bernhard Holzer

Transverse Beam Dynamics III

I) Linear Beam Optics

Single Particle Trajectories
Magnets and Focusing Fields
Tune \& Orbit
II) The State of the Art in High Energy Machines:

The Beam as Particle Ensemble
Emittance and Beta-Function
Colliding Beams \& Luminosity
III) Errors in Field and Gradient:

Liouville during Acceleration
The $\Delta p / p \neq 0$ problem
Dispersion
Chromaticity

Luminosity

Example: Luminosity at LHC

$$
\begin{array}{ll}
\beta_{x, y}^{*}=0.55 \mathrm{~m} & \boldsymbol{f}_{0}=11.245 \mathrm{kHz} \\
\varepsilon_{x, y}=5 * 10^{-10} \mathrm{radm} & \boldsymbol{n}_{b}=2808 \\
\sigma_{x, y}=16 \mu \mathrm{~m} &
\end{array}
$$

$$
I_{p}=584 m A
$$

$$
\boldsymbol{L}=1.0 * 10^{34} \mathrm{l} / \mathrm{cm}^{2} \boldsymbol{s}
$$

Overall cross section of the Higgs:

$$
\begin{gathered}
L=\frac{1}{4 \pi \boldsymbol{e}^{2} \boldsymbol{f}_{0} \boldsymbol{n}_{b}} * \frac{\boldsymbol{I}_{\boldsymbol{p} 1} \boldsymbol{I}_{p_{2}}}{\sigma_{x} \sigma_{y}} \\
\sqrt{\varepsilon \beta}
\end{gathered}
$$

Make β^{*} as small as possible to achieve μm beam size at the IP !!!

What is a μm ?

12.) Insertions

β-Function in a Drift

In a drift, without focusing, the β-function is increasing quadratically.
At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice.
-> here we get the largest beam dimension.
-> keep L^{*} as small as possible

$$
\beta(L)=\beta^{*}+\frac{L^{2}}{\beta^{*}}
$$

... unfortunately ... in general high energy detectors that are installed in that drift spaces

yes ... yes ... there is NO talk without it ...

 The Higgs

ATLAS event display: Higgs $=>$ two electrons \& two muons

The LHC Insertions

... finally ... let's talk about acceleration

crab nebula,
burst of charged particles $E=10{ }^{20} \mathrm{eV}$

14.) Liouville during Acceleration

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

Beam Emittance corresponds to the area covered in the x, x^{\prime} Phase Space Ellipse

Liouville: Area in phase space is constant.

But so sorry ... $\varepsilon \neq$ const !

Classical Mechanics:
phase space = diagram of the two canonical variables position \& momentum
$\boldsymbol{x} \quad \boldsymbol{p}_{\boldsymbol{x}}$

According to Hamiltonian mechanics:
phase space diagram relates the variables q and p
Liouvilles Theorem: $\quad \int p d q=$ const
... referring to the hor. plane $\int p_{x} d x=$ const
for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$
\begin{aligned}
& x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\frac{\beta_{x}}{\beta}=\frac{p_{x}}{p} \\
& \int \underbrace{x^{\prime} d x}_{\varepsilon}=\frac{\int p_{x} d x}{p} \propto \frac{\text { const }}{m_{0} c \gamma \beta}
\end{aligned}
$$

s

$$
\Rightarrow \quad \varepsilon=\int x^{\prime} d x \propto \frac{1}{\beta \gamma}
$$

the beam emittance shrinks during

$$
\begin{aligned}
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \beta_{x}=\frac{v_{x}}{c}
\end{aligned}
$$

Example: HERA proton ring

injection energy: 40 GeV $\quad \gamma=43$
flat top energy: 920 GeV $\quad \gamma=980$
emittance $\varepsilon(40 \mathrm{GeV})=1.2 * 10-7$ $\varepsilon(920 \mathrm{GeV})=5.1 * 10-9$

7σ beam envelope at $E=40 \mathrm{GeV}$

Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1 / 2}$ in both planes.

$$
\sigma=\sqrt{\varepsilon \beta}
$$

2.) At lowest energy the machine will have the major aperture problems, \rightarrow here we have to minimise $\hat{\beta}$
3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.

LHC injection optics at 450 GeV

Liouville during Acceleration

Protons

... shrink during acceleration

ATTENTION !!!

Electron beams in a storage ring are determined by light emission and behave completely different.
... they grow.

The , not so ideal world "

15.) The , $\Delta p / p \neq 0 "$ Problem

ideal accelerator: all particles will see the same accelerating voltage.

$$
\rightarrow \quad \Delta p / p=0
$$

„nearly ideal" accelerator: Cockroft Walton or van de Graaf

$$
\Delta p / p \approx 10-5
$$

RF Acceleration-Problem: panta rhei !!!

(Heraklit: 540-480 v. Chr.)
just a stupid (and a little bit wrong) example)

storage ring rf cavity

$$
\begin{aligned}
& \lambda=75 \mathrm{~cm} \\
& \sin \left(90^{\circ}\right)=1 \\
& \sin \left(84^{\circ}\right)=0.994
\end{aligned} \quad \frac{\Delta U}{U}=6.0 \quad 10^{-3}-2 .
$$

typical momentum spread of an electron bunch:

$$
\frac{\Delta p}{p} \approx 1.0 \quad 10^{-3}
$$

Dispersive and Chromatic Effects: $\Delta p / p \neq 0$

Are here any Problem ???
font colors due to

16.) Dispersion and Chromaticity:
 Magnet Errors for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
dipole magnet $\quad \alpha=\frac{\int B d l}{p / e}$

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

focusing lens

$$
k=\frac{g}{p / e}
$$

Dispersion

the typical Formula 1 effect:

Those who are faster (have higher momentum) are running on a larger circle.

BUT

they are focused nevertheless.

Dispersion

Example: homogeneous dipole field

Matrix formalism:

$$
\left.\begin{array}{l}
x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\
x(s)=C(s) \cdot x_{0}+S(s) \cdot x_{0}^{\prime}+D(s) \cdot \frac{\Delta p}{p}
\end{array}\right\} \quad\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=\left(\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{S} \\
\boldsymbol{C}^{\prime} & \boldsymbol{S}^{\prime}
\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{0}+\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}}\binom{\boldsymbol{D}}{\boldsymbol{D}^{\prime}}_{0}
$$

or expressed as 3×3 matrix

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

Example
\(\left.\begin{array}{l}x_{\beta}=1 ··· 2 \mathrm{~mm}

D(s) \approx 1 ··· 2 \mathrm{~m}

\Delta p / p \approx 1 \cdot 10^{-3}\end{array}\right\}\)| Amplitude of Orbit oscillation |
| :--- |
| contribution due to Dispersion \approx beam size |
| Dispersion must vanish at the collision point |

Calculate D, D': ... takes a couple of sunny Sunday evenings !

$$
D(s)=S(s) \int_{s_{0}}^{s_{1}} \frac{1}{\rho} C(\widetilde{s}) d \widetilde{\mathrm{~s}}-C(s) \int_{\mathrm{s}_{\mathrm{o}}}^{\mathrm{s}_{1}} \frac{1}{\rho} S(\widetilde{\mathrm{~s}}) \mathrm{d} \widetilde{\mathrm{~s}}
$$

Dispersion is visible

HERA Standard Orbit
dedicated energy change of the stored beam
HERA Dispersion Orbit
\rightarrow closed orbit is moved to a dispersions trajectory

$$
x_{p}=D(s) * \frac{\Delta p}{p}
$$

Attention: at the Interaction Points

 we require $D=D^{\prime}=0$
B. J. Holzer, CERN

17.) Chromaticity:
 A Quadrupole Error for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. зи 1/p

Remember the normalisation of the external fields:
focusing lens

$$
k=\frac{g}{p / e}
$$

 to low energy ideal energy
a particle that has a higher momentum feels a weaker quadrupole gradient and has a lower tune.

$$
k \rightarrow k-\Delta k \quad Q \rightarrow Q-\Delta Q
$$

definition of chromaticity:

$$
\Delta Q=Q^{\prime} \frac{\Delta p}{p}
$$

... what is wrong about Chromaticity:

Every individual particle has an individual momentum and thus an individual tune.

Q^{\prime} is a number indicating the size of the tune spot in the working diagram,
Q^{\prime} is always created if the beam is focussed
\rightarrow it is determined by the focusing strength k of all quadrupoles

$$
\Delta \boldsymbol{Q}=-\frac{1}{4 \pi} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} \boldsymbol{k}_{0} \beta(\boldsymbol{s}) \boldsymbol{d} \boldsymbol{s} \quad Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

$k=$ quadrupole strength
$\beta=$ betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC
B. J. Holzer, CERN

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
Q^{\prime}=250 \\
\Delta p / p=+-0.2 * 10^{-3} \\
\triangle Q=0.256 \ldots 0.36
\end{array}\right\} \quad \begin{array}{l}
\rightarrow \begin{array}{l}
\text { Some particles get very close to } \\
\text { resonances and are lost }
\end{array} \\
C E R N
\end{array}\right\} \begin{array}{l}
\text { in other words: the tune is not a point } \\
\text { it is a pancake }
\end{array} \\
& \hline
\end{aligned}
$$

> Tune signal for a nearly uncompensated cromaticity $\left(Q^{\prime} \approx 20\right)$

Ideal situation: cromaticity well corrected, ($Q^{\prime} \approx 1$)

Tune and Resonances

$$
m * Q_{x}+n * Q_{y}+l * Q_{s}=\text { integer }
$$

Tune diagram up to 3rd order

B. J. Holzer, CERN
... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

Correction of Chromaticity:
Need: additional quadrupole strength for each momentum deviation $4 p / p$
1.) sort the particles acording to their momentum

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

... using the dispersion function

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$
\left.\begin{array}{c}
B_{x}=\tilde{g} x y \\
B_{y}=\frac{1}{2} \widetilde{g}\left(x^{2}-y^{2}\right)
\end{array}\right\} \quad \frac{\partial B_{x}}{\partial y}=\frac{\partial B_{y}}{\partial x}=\tilde{g} x
$$

—> amplitude dependent gradient

Correction of Q^{\prime} :

k_{1} normalised quadrupole strength k_{2} normalised sextupole strength

Sextupole Magnets:

$$
k_{1}(\operatorname{sext})=\frac{\tilde{g} x}{p / e}=k_{2} * x
$$

$$
=k_{2} * D \frac{\Delta p}{p}
$$

Combined effect of „natural chromaticity" and Sextupole Magnets:

$$
Q^{\prime}=-\frac{1}{4 \pi}\left\{\int k_{1}(s) \beta(s) d s+\int k_{2}(s) D(s) \beta(s) d s\right\}
$$

You only should not forget to correct Q‘ in both planes ... and take into account the contribution from quadrupoles of both polarities.

A word of caution: keep non-linear terms in your storage ring low.

bn at injection

Clearly there is another problem...
... if it were easy everybody could do it

Again: the phase space ellipse for each turn write down - at a given position ,s" in the ring - the single partice amplitude x and the angle $x^{\prime} \ldots$ and plot it.

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 1}=M_{\text {turn }} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0}
$$

A beam of 4 particles

- each having a slightly different emittance:

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore.
\rightarrow no equatiuons: instead: Computer simulation
"particle tracking "

Effect of a strong (!!!) Sextupole

\rightarrow Catastrophy!

„dynamic aperture"

The Mini-Beta scheme ...
... focusses strongly the beams to achieve smallest possible beam sizes at the IP. The obtained small beta function at the IP is called β^{*}. Don't forget the cat.

Beam dimension during acceleration: A proton beam shrinks during acceleration in both ytransverse dimensions. We call it unfortunately "adiabatic shrinking".
Nota bene: An electron beam in a ring is growing with energy !!
Dispersion ...
... is the particle orbit for a given momentum difference.
Chromaticity ...
... is a focusing problem. Different momenta lead to different tunes \rightarrow attention ... resonances !!

Sextupoles
have non-linear fields and are used to compensate chromaticity. However we have to be careful: Strong non-linear fields can lead to particle losses (dynamic aperture)

