
Ad van ced co u rse – ANL , Ju n e 2023

The FLUKA environment

for user routine programming

Overview

• Why user routines

• How to link them into a custom executable

• Accessible information (in COMMON)

• Available tools (core routines)

• Debugging practice

2The FLUKA environment

Why user routines

• FLUKA offers a rich choice of built-in options (cards) for scoring most useful

quantities and for applying variance reduction techniques, without requiring the

users to write a single line of code. These should be fully explored and exploited

first.

• Nevertheless, one may still need

• to simulate a specific scenario, which cannot be set up by cards only (typically source routine)

• to extract information that is not directly obtainable

• Pre-defined user routines offer deeper flexibility, at the cost of (Fortran)

programming effort and post-processing custom analysis.

The FLUKA environment 3

Where to look

• User routine templates sit in src/user

• The user should copy the needed ones into own working directory and customize them.

• Plenty of variables containing relevant information are accessible by the inclusion of the

files in the include directory (e.g., INCLUDE 'trackr.inc'), which make them

available through COMMON blocks.

The FLUKA environment 4

/usr/local/fluka/

├── include

└── src

├── tools

└── user

├── …

The Compile tab in Flair

Most user routines need to

be activated by input cards.

The Database button

includes the Scan Input

capability that automatically

highlights the user routines

implied by your input file.

A single executable shall

embed all user routines of

your choice.

The FLUKA environment 5

The free name of

your executableUser routine already added

(more than one may be

added)

Add a user routine linker choice *

Final step:

Compile and link
List all the user

routines

Edit the selected

routine

* Note the linker alternative ldpmqmd, which is required to include

the DPMJET and RQMD libraries (for ions above 125 MeV/n and

hadrons above 20 TeV).

User routine scope [I]: inside the simulation loop

The FLUKA environment 6

usrein.f, usreou.f, ftelos.f are examples of user

routines always invoked with no need for an

activating card (but by default they do nothing)

USRICALL

USERDUMP

USROCALL

USERWEIG

SOURCE

usrini.f

usrein.f

usrout.f

usreou.f

source_newgen.f

source.f

mgdraw_empty.f

mgdraw.f

comscw.f

fluscw.f

usrrnc.f

MAT-PROP usrmed.f

USRGCALL usrglo.f

P
ri

m
a
ry

 h
is

to
ry

 l
o

o
p

ftelos.f

SCORING

comscw.f fluscw.f

endscp.f fldscp.f

musrbr.f lusrbl.f

fusrbv.f usrrnc.f

INITIALISATION

usrglo.f

usrini.f

usrein.f

OUTPUT

usreou.f

usrout.f

ftelos.f

multipurpose

usrmed.f

accessing

(almost) everything

mgdraw_empty.f

mgdraw.f

SOURCE

GENERATION

source_newgen.f

source.f

(soevsv.f) (lppsok.f)

in src/user

User routine scope [II]

The FLUKA environment 7

OPTICAL PHOTONS

abscff.f dffcff.f

frghns.f ophbdx.f

pshckp.f queffc.f

rflctv.f rfrndx.f

ustckv.f wvlnsh.f

LATTICE

GEOMETRY

lattic.f

MAGNETIC /

ELECTRIC FIELDS

magfld.f

elefld.f

Accessing

particle stack

mdstck.f

stupre.f

stuprf.f

BIASING

ubsset.f

usimbs.f

udcdrl.f

PHYSICS

formfu.f

MATERIALS

usrhsc.f

in src/user

The shared variable scope

beamcm.inc beam particle properties (from BEAM and BEAMPOS)

sourcm.inc user variables from a user-written source

souevt.inc recording of the current source particle(s)

caslim.inc number of primary particles followed

flkstk.inc main particle stack of FLUKA

emfstk.inc particle stack for electrons, positrons and photons interactions

genstk.inc properties of secondaries created in a hadronic event

fheavy.inc special stack for nuclear fragment products

resnuc.inc residual nucleus properties

flkmat.inc material properties

ltclcm.inc lattice cell identification

trackr.inc properties of the particle currently transported

paprop.inc intrinsic particle properties (mass, charge, mean life, …)

scohlp.inc scoring card identification

The FLUKA environment 8

in include

just a small

selected subset

dblprc.inc sets the encyclopaedic scene
DouBLe PReCision common block included in all FLUKA routines, containing the declaration

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

and setting plenty of useful mathematical and physical constants, available to the user.

Users are strongly encouraged to adhere to the FLUKA style by not spoiling double precision (use real numbers in D-

scientific notation or integer numbers) and adopting the constants defined in this file for maximum accuracy, e.g.:

The FLUKA environment 9

Speed of light c in cm/s
PARAMETER (CLIGHT = 2.99792458D+10)

Avogadro number NA (mol-1)
PARAMETER (AVOGAD = 6.0221367D+23)

Boltzmann constant K (J/K)
PARAMETER (BOLTZM = 1.380658D-23)

Electron mass me (GeV/c2)
PARAMETER (AMELCT = 0.51099906D-03)

Conversion factor 1’000 from GeV to MeV
PARAMETER (GEVMEV = 1.0D+03)

0, 1, 2, 2/3
PARAMETER (ZERZER = 0.D+00)

PARAMETER (ONEONE = 1.D+00)

PARAMETER (TWOTWO = 2.D+00)

PARAMETER (TWOTHI = TWOTWO / THRTHR)

, 2
PARAMETER (PIPIPI = 3.141592653589793238462643383279D+00)

PARAMETER (TWOPIP = 6.283185307179586476925286766559D+00)

e
PARAMETER (ENEPER = 2.718281828459045235360287471353D+00)

iounit.inc

Pre-defined input/output unit numbers included in all FLUKA routines and reserved

for FLUKA.

standard output unit:
PARAMETER (LUNOUT = 11)

standard error unit:
PARAMETER (LUNERR = 15)

Hence, your scoring card output unit numbers in the .inp file should start from 21.

The user can write there own messages from user routines, e.g.:

WRITE (LUNOUT, *) ' My routine has been called!'

WRITE (LUNERR, *) ' Invalid value in my routine!'

The FLUKA environment 10

caslim.inc

/CASLIM/ is needed to decide when to stop the run

* TRNLIM = if cpu_time_left < tlim the run will be ended

* Tpmean = is the average time needed for the following of one beam particle

* Tprmax = is the maximum time needed for the following of one beam particle

* Trntot = the cumulative time needed to follow the beam particles

* Ncases = maximum number of beam particles to be followed (modulo 1,000,000,000)

* Mcases = maximum number of beam particles to be followed in excess of 1,000,000,000, divided by 1,000,000,000

* Ncase = current number of beam particles followed (modulo 1,000,000,000), i.e. current event number

* Mcase = current number of beam particles followed in excess of 1,000,000,000, divided by 1,000,000,000

* Ncoinc = flag used by the detect option to know if the Ncase particle has or has not to be considered in coincidence

with the previous one (if they have the same Ncoinc/Mcoinc they belong to the same event)

* Mcoinc = flag as Ncoinc, accounting for Ncase > 1,000,000,000

* Lpseed = if .true. seeds will be printed for any history

* Levtdt = if .true. a few data will be printed at each history

* Lcrrfl = if .true. rfluka.stop must be created and the run stopped

The FLUKA environment 11

flkstk.inc
FLuKa STacK contains all the information on the particles currently in the stack, waiting for transport

* WTFLK(NPFLKA) = particle statistical weight NPFLKA = stack pointer

* PMOFLK(NPFLKA) = particle (laboratory) momentum (GeV/c)

* TKEFLK(NPFLKA) = particle (laboratory) kinetic energy (GeV)

* XFLK, YFLK, ZFLK (NPFLKA) = particle position x-coordinate, y-coordinate, z-coordinate

* TXFLK, TYFLK, TZFLK (NPFLKA) = particle direction x-component, y-component, z-component

* TXPOL, TYPOL, TZPOL (NPFLKA) = particle polarization x-component, y-component, z-component

* DFNEAR(NPFLKA) = distance to the nearest boundary

* AGESTK(NPFLKA) = age of the particle (seconds)

* EKPSTK(NPFLKA) = kinetic energy of the last inelastic interaction parent

* AKNSHR(NPFLKA) = Kshort component of K0/K0bar

* CMPATH(NPFLKA) = cumulative path travelled by the particle since it was produced (cm)

* ILOFLK(NPFLKA) = particle nature

* LOFLK(NPFLKA) = particle generation

* NRGFLK(NPFLKA) = particle region number

* NLATTC(NPFLKA) = particle lattice cell number

The FLUKA environment 12

genstk.inc

GENerator STacK contains all the information on the secondary particles (secondaries) created in discrete

events

* NP = number of (light) secondaries IP = 1, …, NP

* Kpart (ip) = nature of the IPth secondary

* Cxr, Cyr, CZr (ip) = x-axis, y-axis, z-axis direction cosine of the IPth secondary

* Tki (ip) = laboratory kinetic energy of IPth secondary (GeV)

* Plr (ip) = laboratory momentum of the IPth secondary (GeV/c)

* Wei (ip) = statistical weight of the IPth secondary

The FLUKA environment 13

fheavy.inc

The FLUKA environment 14

/FHEAVY/ is the storage for heavy secondaries created as a result of a nuclear reaction

* NPHEAV = number of secondaries IP = 1, …, NPHEAV

* KHEAVY(IP) = type of the IPth secondary
(3 = 2H, 4 = 3H, 5 = 3He, 6 = 4He, 7-12 = as specified by IBHEAV and ICHEAV)

* INFHEA(IP) = possible extra info for the IPth secondary

* CXHEAV(IP) = direction cosine of the IPth secondary with respect to x-axis

* CYHEAV(IP) = direction cosine of the IPth secondary with respect to y-axis direction

* CZHEAV(IP) = direction cosine of the IPth secondary with respect to z-axis

* TKHEAV(IP) = kinetic energy of the IPth secondary

* PHEAVY(IP) = momentum of the IPth secondary

* WHEAVY(IP) = statistical weight of the IPth secondary

* AGHEAV(IP) = "age" of the IPth secondary with respect to the interaction time

* AMHEAV(KP) = atomic masses of the twelve types of evaporated or fragmented or fissioned particles

* AMNHEA(KP) = nuclear masses of the twelve types of evaporated or fragmented or fissioned particles

* ANHEAV(KP) = name of the kp-type heavy particle KP = KHEAVY(IP)

* ICHEAV(KP) = charge number of the kp-type heavy particle (e.g., ICHEAV(5)=2)

* IBHEAV(KP) = mass number of the kp-type heavy particle

resnuc.inc
/RESNUC/ contains the information on the residual nucleus created as a result of a nuclear reaction

* Icres = residual nucleus atomic number

* Ibres = residual nucleus mass number

* Amnres = residual nucleus nuclear mass (ground state)

* Ammres = residual nucleus atomic mass

* Eres = residual nucleus total energy

* Ekres = residual nucleus kinetic energy

* PxRES, PyRES, Pzres = residual nucleus momentum components

* Ptres2 = residual nucleus squared momentum

* Angres = residual nucleus angular momentum (GeV/c fm)

* AnxRES, ANyRES, ANzres = residual nucleus angular momentum components

* Icestr = residual nucleus atomic number before evaporation

* Ibestr = residual nucleus mass number before evaporation

* Tvestr = residual nucleus excitation energy before evaporation

* Anestr = residual nucleus angular momentum before evaporation

The FLUKA environment 15

trackr.inc
TRACK Recording contains all the information on the particle being currently tracked and its current step

* Ntrack = number of track segments (normally 1, unless in a magnetic/electric field)

* Mtrack = number of energy deposition events along the track

* Xtrack, Ytrack, Ztrack (I) = x, y, z coordinate of the end point of the Ith track segment I = 0, …, NTRACK

* Ttrack(I) = length of the Ith track segment I = 1, …, NTRACK

* Dtrack(I) = energy deposition of the jth deposition event I = 1, …, MTRACK

* Dptrck(I) = momentum loss of the jth deposition event I = 1, …, MTRACK

* Jtrack = nature of the particle (for recoils or kerma deposition it can be outside the allowed particle id range, assuming

values like 208: "heavy" recoil, 211: EM below threshold, 308: low energy neutron kerma; in those cases the id of
the particle originating the interaction is saved inside J0trck, which otherwise is 0)

* J0trck = see above

* Etrack = total energy of the particle

* CxTRCK, CyTRCK, Cztrck = direction cosines of the current particle

* Wtrack = weight of the particle

* Cmtrck = cumulative curved path since particle birth

* Atrack = age of the particle

* Ltrack = generation number

The FLUKA environment 16

evtflg.inc
EVenT FLaGging indicates the last interaction type

* LELEVT = Elastic interaction

* LINEVT = Inelastic interaction

* LDECAY = Particle decay

* LDLTRY = Delta ray production (Moller and Bhabha included)

* LPAIRP = Pair production

* LBRMSP = Bremsstrahlung

* LANNRS = Annihilation at rest

* LANNFL = Annihilation in flight

* LPHOEL = Photoelectric effect

* LCMPTN = Compton effect

* LCOHSC = Rayleigh scattering

* LOPPSC = Optical photon scattering

* LELDIS = Electromagnetic dissociation

* LRDCAY = Radioactive decay

* LSRPHO = Synchrotron radiation emission

The FLUKA environment 17

Available tools in the FLUKA library

• CALL FLABRT (‘calling routine name’,’my message’)

to abort FLUKA. To be used when an user routine reaches an unacceptable state (or for
debugging!)

• CALL OAUXFI (‘file name’, LUNRDB, ‘OLD’, IERR)

to open an auxiliary file (sitting in some default locations) for reading its content

• Random number generators:

• ... = FLRNDM (XDUMMY) uniformly distributed in [0-1)

• CALL FLNRRN (RGAUSS) Gaussian distributed (μ=0, =1)

• CALL FLNRR2 (RGAUS1,RGAUS2) Gaussian distributed uncorrelated pair

• CALL SFECFE (SINT,COST) sine and cosine of uniformly distributed azimuthal angle

• CALL RACO (TXX, TYY, TZZ) isotropically distributed 3D direction

• CALL SFLOOD (XXX, YYY, ZZZ, UXXX, VYYY, WZZZ) position and direction on a unit
sphere to generate uniform and
isotropic fluence inside

The FLUKA environment 18

Available tools in the FLUKA library [II]

All regions are internally treated as numbers, both in FLUKA and user routines.

*When coding these, you should CALL GEON2R to translate your region name into the respective number and save the

latter for runtime use. This has to be done only once the first time your routine is called (use IF (LFIRST) THEN).

The FLUKA environment 19

*Black hole

BLKBODY 5 +blkbody -void

*Void around

VOID 5 +void -target

*Target

TARGET 5 +target

1 BLKBODY 1 BLCKHOLE OFF 0.00000E+00 9.99852E+04

(1 BLCKHOLE OFF)

2 VOID 2 VACUUM OFF 0.00000E+00 9.99852E+04

(2 VACUUM OFF)

3 TARGET 12 COPPER OFF 0.00000E+00 9.99852E+04

(12 COPPER OFF)

Name based declaration in the inputfile

Region numbers and names echoed in .out

CALL GEON2R (REGNAM, NREG, IERR)

* Input variable:

* Regnam = region name (CHAR*8)

*

* Output variables:

* Nreg = region number

* Ierr = error code

* (0 on success, 1 on failure)

CALL GEOR2N (NREG, REGNAM, IERR)

* Input variable:

* Nreg = region number

*

* Output variables:

* Regnam = region name (CHAR*8)

* Ierr = error code

* (0 on success, 1 on failure)

Get the region number from region name (… and vice-versa, do you really need it?*)

Available tools in the FLUKA library [IIΙ]

• Adaptive Gaussian quadrature

EXTERNAL FINTEG

IOPT = 3

ACCURA = 1.0D-4

... = FLGAUS (FINTEG, XA, XB, ACCURA, IOPT, NXEXP)

Gives the integral over the (XA,XB) interval of the product between X**NXEXP and the FINTEG function, to be coded by
the user as a separate DOUBLE PRECISION FUNCTION FINTEG (X)

• Real solutions of 3rd order equation

SUBROUTINE RADCUB (AA0, AA1, AA2, AA3, X, X0, NRAD)

Computes real solutions of the equation: A0*X3 + A1*X2 + A2*X + A3 = 0

The solutions are put in the array X; if there is only one real solution it is put into X(1), while X(2) and X(3) are set to -1.D32.

If A0=0 (and A1=0) the routine computes standard solutions of a second (or first) degree equation. If it no real solution

exits, the whole array X is set to -1.D32. It is possible to compute solutions with a scale factor X0 to avoid loss of

significance with very large or very small numbers. The NRAD flag records the number of real solutions found.

The FLUKA environment 20

Available tools in the FLUKA library [IV]
DOUBLE PRECISION FUNCTION GAMFUN (X)

Calculates the double precision complete Gamma function for double precision argument X

SUBROUTINE RORDIN (RVECT, ICORR, LEN)

Rearranges a real array RVECT in increasing order

SUBROUTINE RORDDE (RVECT, ICORR, LEN)

Rearranges a real array RVECT in decreasing order

DOUBLE PRECISION FUNCTION FLGNDR (X, LMAX, PLGNDR)

Function for LeGeNDRe polynomials

Computes Plmax (x) and stores all values Pi (x) for i=0,lmax in the PLGNDR array

The FLUKA environment 21

Debugging!

22

● Linux offers various tools that are integrated in the

FLUKA environment.

https://xkcd.com/1739/

GDB: The GNU Project Debugger

https://sourceware.org/gdb/

CGDB (its frontend)

https://github.com/cgdb

[me@localhost myFolder]$ /usr/local/fluka/bin/rfluka -g cgdb -e executable/fluka.x -N0 -M1 test.inp

Instructions via terminal

Normal call Debug me! Executable to be debugged

The FLUKA environment

Debugging (example)

23

[me@localhost myFolder]$ /usr/local/fluka/bin/rfluka -g cgdb -e executable/fluka.x -N0 -M1 test.inp

New UI allocated

(gdb) b 86

Breakpoint 1 at 0x407b60: file mgdraw.f, line 90.

We ask for a breakpoint on line

86, it accepted it on line 90

(gdb) r

Starting program: myFolder/executable/fluka.x myFolder/test.inp

Debugging window: in the top part there is the

source, while instruction are given in the bottom.

You can:

• [s]tep to the next instruction

• go to the [n]ext line

• [b]ack[t]race: prints a stack trace, listing each

function and its arguments

• [p]rint variable value

• …and much more!

The FLUKA environment

Post-mortem debugging

24

You can ask FLUKA to produce a core dump when it ends unexpectedly.
To do so, you need to set WHAT(4) of the START card equal to 1:

When a core dump is produced, the user can perform a post-mortem debugging invoking on the terminal:

gdb myfailingexecutable core.12345

Looking at the backtrace normally helps to identify the failing routine/line, even in the absence of the FLUKA

source code.

It may happen that on your system core generation is inhibited by default. To overcome the latter, – on

Fedora – one needs to fill the /proc/sys/kernel/core_pattern system file with the core.%p content, by
the echo command:

echo "core.%p" > /proc/sys/kernel/core_pattern

The FLUKA environment

What is available for users

• Once the user routine has been written or modified, the user needs to:
a. Compile each source routine into an object file: /usr/local/fluka/bin/fff

b. Link each object file to the fluka executable*: /usr/local/fluka/bin/lfluka

• As good practice, try to keep everything in your working directory

• For simulations requiring the DPMJET and RQMD packages, add the option -d, or use ldpmqmd

instead of lfluka

The FLUKA environment 26

mysource.f

myroutine.f

etc.f

mysource.o

myroutine.o

etc.o

fff

lfluka

myexecutable.x

Do everything

outside the

installation

folder

fff xxx.f

fff yyy.f

lfluka -o myfluka xxx.o yyy.o

