
Ad van ced co u rse – ANL , Ju n e 2023

Fortran basics

A short introduction to Fortran and how it is used in FLUKA

Outline

• Introduction to Fortran

• Differences between Fortran 77 and 90+

• Fortran in the user routines of FLUKA

• Fortran quick start guide

• Variables, arrays and strings

• Logical operators

• Conditional (if) and loop (do) constructs

• Procedures

• File operations

Fortran basics

History of Fortran

Fortran born in the early 1950s, and the first compiler was released in 1957

Standards:

• Fortran 66 – The first standard

• Fortran 77 – Extension on Fortran 66

• Fortran 90 – Dynamic memory allocation

• Fortran 95 – High performance Fortran specification

• Fortran 2003 – Object oriented programming

• Fortran 2008 / 2018 – Extensions of Fortran 2003

Fortran basics

“Modern” Fortran

Introduction of the Free format

File format

• Fortran 77 uses the Fixed file format (extensions: .f or .for):

• Maximum 72 characters in one line

• First 6 are reserved for special function:

• If the first character is ‘c’, ‘C’ or ‘*’, then the line is a comment

• The 1st – 5th characters can be used for statement labels

• If the 6th position is not empty, then the line is treated as a continuation of the previous one

(Often the ‘&’ character is used)

Fortran basics

*...5....0....5....0....5

program hello

c This is a comment

print *, 'Hello,

& World!'

end program hello

File format

• Fortran 90 introduced the Free format (extensions: .f90, [.f95, etc.]):

• Code can start at the 1st column

• Inline comments with ‘!’

• Continuation lines

• Note: It is not possible to mix both in single source file.

The compiler expects the “correct” format based on the file extension.

Fortran basics

program hello

print *, 'Hello,&

& World!' ! This is a comment

end program hello

Variable and procedure names

• Fortran 77:

• Limited to 6 alphanumerical characters

• Have to start with a letter

• Case insensitive

• Starting with Fortran 90:

• Can be up to 31 character long

• Can contain letters, numbers and underscore (‘_’)

• Have to start with a letter

• Case insensitive

• Note: Try to use descriptive names, to make code readable

Fortran basics

Variable declaration

• Fortran by default uses implicit declaration, which means the type of the variable
(integer, real, etc.) is determined by a preset rule.

• The default rule is:

• If the variable starts with the letter ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, or ‘N’ it is an integer

• Otherwise, it is a real (single precision float)

• It is possible (and necessary) to overwrite this with explicit declaration, where you

manually specify another variable type, like:

Fortran basics

double precision :: my_number

logical :: my_flag

Issues with implicit declaration

• Typos remain hidden

If you have a typo in a variable name, the compiler won’t raise an error

It is a different, but valid variable usually without a value

Using it in calculations will lead to unexpected results

• Unexpected type conversion

For example: Information is lost if you want to assign a double precision number to integer

variable

• Solution

Force explicit declaration with the statement:

Fortran basics

implicit none

Comparison of Fortran 77 and 90+

• FLUKA user routines are somewhere in-between

Implicit declaration using double precision numbers instead of reals

• Modernization effort for a future release

A new version of the source routine is already available (fixed format, forced explicit declaration)

Fortran basics

Fortran 77 Fortran 90+

Format Fixed (.f, .for) Free (.f90, .f95, …)

Maximum line length 72 132

Variable name max. length 6 31

Variable declaration (usually) implicit forced explicit

Outline

• Introduction to Fortran

• Differences between Fortran 77 and 90+

• Fortran in the user routines of FLUKA

• Fortran quick start guide

• Variables, arrays and strings

• Logical operators

• Conditional (if) and loop (do) constructs

• Procedures

• File operations

Fortran basics

Variables

• Declaration: • Assignment:

Fortran basics

integer :: amount, counter

real :: pi, sqrt_two

double precision :: energy

complex :: frequency

character :: initial

logical :: okay

amount = 10

pi = 0.3141592e1

energy = 1.0d-3

frequency = (1.0, -0.5)

initial = ’F’ ! Or ”F”

okay = .true. ! Or .false.

Arrays and strings

• Arrays: • Strings:

Fortran basics

! 1D integer array

integer, dimension(10) :: array1

! An equivalent array declaration

integer :: array2(10)

! 2D real array

real, dimension(10, 10) :: array3

! Custom lower and upper

! index bounds

real :: array4(0:9)

real :: array5(-5:5)

character(len=10) :: string1

! Or

character(10) :: string2

string2 = ’FLUKA’

Note: Strings are padded with “space” to the
specified length, i.e. ’FLUKA ’.

To omit the padding use the trim() function

Logical operators

• Relational operators:

Equal:

a .eq. b a == b

Not equal:

a .ne. b a /= b

Greater than:

a .gt. b a > b

Less than:

a .lt. b a < b

Greater than or equal:

a .ge. b a >= b

Less than or equal:

a .le. b a <= b

• Logical operators:

.true. if both operands are .true.:

a .and. b

.true. if one of operands is .true.:

a .or. b

.true. if the operand is .false.:

.not. a

.true. if the operands are the same:

a .eqv. b

.true. if the operands are the opposite:

a .neqv. b

Fortran basics

Conditional (if) and loop (do) constructs

• Conditional (if) construct:

• Conditional loop (do while):

• Loop (do) construct:

• Loop with skip:

Fortran basics

if (angle < 90.0) then

print *, ‘Angle is acute‘

else if (angle > 180.0) then

print *, ‘Angle is reflex‘

else

print *, ‘Angle is obtuse‘

end if

integer :: i

do i = 1, 10

print *, i

end do

do i = 1, 10, 2

! Print only odd numbers

print *, i

end do

i = 1

do while (i < 11)

print *, i

i = i + 1

end do

Procedures

• Functions:

Invoked within an expression or assignment

Returns a value

• Subroutines:

Invoked by a call statement

No return value

Fortran basics

subroutine print_mx(n, m, A)

integer :: n, m

integer :: i

real :: A(n, m)

do i = 1, n

print *, A(i, 1:m)

end do

end subroutine print_mx

real :: mat(3, 4)

...

call print_mx(3, 4, mat)

integer function cube(i)

integer :: i

cube = i**3

end function cube

program main

integer :: cube

integer :: i, j

i = 3

j = cube(i)

end program main

Passing arguments to procedures

• Many programming languages by default only pass the values of the arguments to

the procedures.

Meaning, changing the value in the procedure doesn’t have any effect on the value

of the original argument.

• However in Fortran, the arguments by themselves are passed to the procedures.

This means, the changes made to the values of the arguments will remain after the

procedure completes.

• Useful when more than one value must be returned.

• Safe practice: Only use functions which don’t change the arguments. Otherwise use

subroutines.

Fortran basics

Save statement

• Variables declared with the save statement retain their value between calls to

procedures

• This allows to create sections of code which only executed at the first call

Fortran basics

integer, save :: amount

real, dimension(10), save :: array

logical, save :: lfirst = .true.

integer, save :: reg_number

integer :: ierr

if (lfirst) then

call geon2r(’TARGET ’, reg_number, ierr)

lfirst = .false.

end if

Opening files

• To open a file in Fortran:
open(unit=<unit>, file=‘<filename>‘, status=‘<status>‘, form=‘<form>‘)

Unit number: used to reference the file in the read/write comments

• Some units numbers are predefined

• FLUKA specific: Unit numbers ≤ 20 and the ones in scorings can’t be used

• FLUKA subroutine: Looks for the file in multiple directories
call oauxfi(‘<filename>‘, <unit>, ‘<form_and_status>‘, <ierr>)

• FLUKA OPEN card:

Fortran basics

Input from files

• Reading from a file:
read(<source>, ‘format‘) a, b, …

Source: Unit number or a string

Format: Use the default *. Fortran will try to figure it out based on the type of the variables

Fortran basics

real, dimension(20) :: a, b

integer :: i

open(unit=21, file=‘input.dat‘, status=‘old‘, form=‘formatted‘)

do i = 1, 20

read(21, *) a(i), b(i)

end do

Output to files

• Writing to a file:
write(<target>, ‘format‘) a, b, …

Target: Unit number or string

Format: The default is * for automatic formatting

Predefined units for writing to the FLUKA output files:

Fortran basics

integer :: i

open(unit=22, file=‘output.txt‘, status=‘new‘, form=‘formatted‘)

do i = 1, 10

write(22, *) i, cube(i)

end do

.out file:
write(lunout, *) a, …

.err file:
write(lunerr, *) a, …

.log file:
write(*, *) a, …

I/O formatting

• The format string lists the format specifiers for the printed variables and it is

enclosed in round brackets:
‘(A10, 5X, I4, /, F8.3, E15.7)‘

Fortran basics

• Integer:
‘(Iw)‘

w characters long

• Real:
‘(Fw.d)‘

w characters long,

fractional part d characters

‘(Ew.d)‘

Exponential form, w characters long,

fractional part d characters

• String:
‘(Aw)‘

w characters long

• Blank space:
‘(nX)‘

n characters long

• New line:
‘(/)‘

Fortran basics

xkcd.com/844

