Source routine

Exercises

Exercise 1A

- Mockup for the Antiproton Decelerator Target at CERN
- Use the provided input file and set up a beam with the following parameters:
- Particle: Proton (particle code: 1)
- Momentum: $26 \mathrm{GeV} / \mathrm{c}$
- Momentum spread: Gaussian, $\Delta \mathrm{p} / \mathrm{p}=1.31 \cdot 10^{-3} @ 2 \sigma$
- Position: $x=0, y=0, z=-10 \mathrm{~cm}$
- Shape: Gaussian, $x=1 \mathrm{~mm}$ @ $1 \sigma, \mathrm{y}=0.5 \mathrm{~mm} @ 1 \sigma$
- Divergence: Gaussian, x = 1 mrad FWHM, y = 0.5 mrad, FWHM
- Enable the debug output
- Run 5 cycles with 5000 primaries each, and verify that the source routine works, with the provided scorings

Exercise 1A / 1B

Note the required time to run the simulation. How much CPU-time would it require to simulate 25 million primaries?

Imagine you need to optimize the antiproton beamline downstream of the target

Instead of simulating the time-expensive antiproton production every time, you can do a two step simulation:

- Record the exiting antiprotons (See the upcoming lecture and exercise for MGDRAW)
- Replay the recorded antiprotons as phase-space source

Exercise 1B

- Use the provided phase-space file as the antiproton source (The phase-space file was created with 25 million primary protons)

Antiproton energy spectrum

- Run the recorded antiprotons in one cycle, sequentially.
- Use the provided scorings to verify the sampling works
-What is the correct normalization factor?

Exercise 2A

- Set up a mixed beam source
- In laser-driven electron acceleration experiments one can expect a following mixed beam source:
- Quasi mono-energetic electrons

Gaussian energy distribution with 2 GeV Mean and 0.4 GeV FWHM Intensity: $100 \mathrm{pC} /$ shot

- Low energy background electrons

Flat energy distribution between 0 and 1.5 GeV
Intensity: $2000 \mathrm{pC} /$ shot

- Background photons

Gaussian energy distribution with 64 MeV Mean and 28 MeV FWHM
Intensity: 10^{12} photon / shot

- Use USRBDX current scorings to visualize the electron and photon spectrums

Exercise 2A

- In the source routine:
- Calculate the probability for each component ($1 \mathrm{C} \approx 6.24 \cdot 10^{18}$ electrons)
- Use a random number to select between them
- Particle codes: Electron = 3, Photon = 7
-Run 5 cycles with 1 million primaries each
- Plot the results with logarithmic y axis

Exercise 2A

Mixed particle beam

- Notice the higher uncertainties in the high energy electron part

Exercise 2B

- Modify the source routine to sample each beam component with the same probability
- Use the predefined constants:
- ONETHI = $1 / 3$
- TWOTHI $=2 / 3$
- Set the appropriate weights to keep the particle spectrum unchanged

Exercise 2B

Mixed particle beam

- Good statistics in the whole energy range

Exercise 3A

- Set up an isotropic direction sampling only in a half space as shown in the picture:
- In the source routine use a do while loop to reject the unneeded directions
- Use a USRBIN scoring to show the created radiation field

Exercise 3B

- Set up an isotropic direction sampling only in a half space as shown in the picture:
- Instead of the rejection method used in 3A:
- Mirror the $\mathrm{Z}<0$ half space of the isotropic direction sampling onto the $Z>0$ part
- Apply a counterclockwise rotation around the Y axis to the sampled directions

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Exercise 3C

- Set up an isotropic direction sampling only in a half space as shown in the picture:
- Modify the source routine used in 3B to have the rotation as a separate subroutine

Exercise 4

- Set up an energy sampling from the following arbitrary function:

$$
f(x)= \begin{cases}0, & \text { if } x<4 \\ \frac{1}{2} x+1, & \text { if } 4 \leq x<6 \\ 0, & \text { if } 6 \leq x\end{cases}
$$

