
Ad van ced co u rse – ANL , Ju n e 2023

Advanced geometry

Advanced settings, transformations and geometry replication (LATTICE)

Overview

• Some less known details

• The GEOBEGIN card, parentheses, adjacent zones

• Refresher: transformations and the ROT-DEFI card

• Geometry replication: LATTICE

• Using replicas

• Scoring with lattices

• The lattic.f user routine and auxiliary routines

Advanced geometry 2

Geometry: some less known details

The GEOBEGIN card | Parentheses | Regions: adjacent zones

Advanced geometry 3

GEOBEGIN card: tracking accuracy

• The tracking accuracy parameter can be adjusted in the GEOBEGIN card

• Defines absolute accuracy used for tracking and boundary identification (in units of 10-6 cm)

• Should be larger than Ar*L , where:

• L is the largest coordinate value in the geometry (excluding the BLCKHOLE confinement)

• Ar is the relative accuracy achievable in double precision (~10-14-10-15).

• By default, FLUKA tries to guess the parameter based on the second largest body in your

geometry (assuming the largest one must be the BLCKHOLE confinement)

• Can be overwritten by explicitly setting the parameter in GEOBEGIN

Advanced geometry 4

Parentheses in region definitions

• Parentheses can be used to perform complex Boolean operations in region descriptions

• The highest operator precedence is given to parentheses, followed by +, - and the |

operator when evaluating the expressions

• The extensive use of parenthesis is discouraged and can create inefficient code

• It is perfectly possible to implement (complex) geometries without using parentheses

• Flair can expand expressions with parentheses, as well as optimise region definitions

with multiple zones with the options available in the Geometry tab:

Advanced geometry 5

The number of adjacent zones (REGION card)

• “Neigh” parameter in the REGION card:

• It is a rough estimate of the number of zones a particle can enter when leaving the current region

zones (5 by default). What actually matters is the sum over all regions, defining the size of the

contiguity list. Note: for many simulation cases, the default value is fine.

• While tracking, the program searches in the contiguity list for the neighbouring zones of each

zone. If the zone is not yet in the list, the whole geometry is scanned and it is added to the list with

its neighbouring zones.

• When the limit is reached (i.e. the list is full) the code prints a warning: GEOMETRY SEARCH

ARRAY FULL. This is not lethal: the calculation continues but with a reduced efficiency.

• If you have more than 1000 regions, you must issue a GLOBAL card putting in WHAT(1) a higher

limit (not beyond 10000).

Advanced geometry 6

Unique region name Number of neighbouring zones (estimate)

Zone 1 Zone 2 Zone 3

Refresher:
transformations and the ROT-DEFI card

Advanced geometry 7

The ROT-DEFIni card

Advanced geometry

The ROT-DEFIni card defines roto-translations that can be applied to bodies,

USRBIN and EVENTBIN cards (via ROTPRBIN card), and LATTICE objects

Axis: rotation with respect to axis

Id: transformation index

If set to 0, then Id is automatically assigned

Name: transformation name

Optional but recommended for easy referencing

Polar: polar angle of the rotation Rpol (0 ≤  ≤ 180 degrees)

Azm: azimuthal angle of the rotation Razm (-180 ≤  ≤ 180 degrees) [clockwise]

Δx, Δy, Δz: offset for the translation T

8

The ROT-DEFIni card

• In a ROT-DEFI, the transformation is defined as Xnew = Rpol()  Razm()  (Xold + T)

• The order of translation / rotation is relevant. They are not commutative!

• The rotations are always performed around the origin of the coordinate system!

• It is preferable to define rotations through the azimuthal angle

• The convention used in the rotation matrices is available in the manual
See: Section 7 – ROT-DEFIni – Note 4

Advanced geometry 9

3. 2. 1.

The ROT-DEFIni card – “chaining”

Advanced geometry 10

• It is possible to “chain” multiple ROT-DEFIni cards as a single transformation

• The Name (or Id) on the “chained” ROT-DEFIni cards has to be the same

• The ROT-DEFIni cards are applied from top to bottom

• The inverse transformation is also accessible with a minus sign (“-”) before the

name or Id number

1.

2.

The ROT-DEFIni card – “chaining”

Advanced geometry 11

1.

x

z

x

z

x

z

x

z

Translation to origin…

Translation to initial

position

…and rotation

around y-axis

2.

1.

2.

Geometry directive: transform

Advanced geometry 12

y

z

$start_transform

...

$end_transform

applies a roto-translation (pre-defined via ROT-DEFI)

to all bodies embedded within the directive

(Δz, Δy)

Geometry replication: LATTICE

Advanced geometry 13

Lattice: the concept

• FLUKA offers replication capabilities via the LATTICE card, which creates a replica

of a model within an empty cell defined by a closed body identical to the container

body of the model

Advanced geometry 14

Empty

lattice cell
Prototype ReplicaPrototype

Lattice: the concept

Advanced geometry 15

Replica

1. For every particle

entering the replica…

2. …its coordinates are transformed to the prototype,

inside which FLUKA performs the tracking

Prototype

3. A resulting particle

exiting the prototype…
4. …is transformed back to the replica boundary

to be tracked in the surrounding geometry

Lattice: basic usage
• Very useful for geometries

where models are used

multiple times (e.g. beamlines,

detector arrays etc.)

• The prototype is defined in detail with all the necessary information (geometry, materials etc.) inside
a closed container body (RCC, RPP etc.). Materials and other properties are assigned only to the

regions constituting the prototype.

• The lattices (replicas) are defined as “empty” regions in their correct location and declared as such
with the LATTICE card at the end of the geometry input (but before the GEOEND card)

• The transformations exactly mapping the replicas onto the prototype are defined using ROT-DEFI

cards

Advanced geometry 16

Prototype

Getting started: a simple example

• A simple working example can be obtained by starting a new project in

Flair and loading the lattice template 

• The prototype and the replica are contained in identical container bodies

• Note: The transformation maps the replica onto the prototype

• The inverse transformation is applied to the replica container to bring it

to the replica location

Advanced geometry 17

Prototype

Lattice

(replica)

Prototype
container

Replica
container

Good practice: To define the replica container

body, clone the container body of the prototype,

rename it and apply to it the inverse of the desired

transformation via a $start_transform directive

Getting started: a simple example

• A second region is created (TARGRP) inside the replica container body and declared as a
lattice region (named Target2) associated to the transformation

• In Flair, the lattice region is displayed as a container filled with a diagonal pattern

• To display the geometry of the lattice, change the view from Media to Lattice in the viewport

• Tip: You can click on a lattice region and type L to be taken to the prototype

Advanced geometry 18

Prototype Lattice Prototype Lattice

A more extended example

• This transformation is defined with 3 ROT-DEFI cards

• Applying the 3 roto-translations A, B and C in the sequence in which they appear

should map the replica onto the prototype

Advanced geometry 19

Prototype

Replica

A

B

C

A more extended example
Note: if a transformation R consists of 3 roto-

translations A, B and C applied in this order,

then R = CBA and the inverse transformation

is R-1 = A-1B-1C-1

Here, R maps the replica onto the prototype,

whereas R-1 is used to transform the replica

container from the prototype to the replica

Advanced geometry 20

A

B

C

A

Prototype

Replica
Translation to origin

y

z

B

Rotation around x-axis

y

z

C

Translation to prototype position

y

z

Numerical precision issues

• Where transformations are involved, it is possible that the user may encounter

problems stemming from numerical precision

• Geometry errors can be generated e.g. when:

• There is an imperfect mapping of the replica onto the prototype, even when the transformation

seems broadly correct at first glance

• Replicas are touching or are separated by small layers of “real” geometry

• To minimise such issues, use as many digits as possible to describe the

transformation and the container bodies of the prototype and replicas

• E.g., the ROT-DEFI cards can be enclosed between a FREE and a FIXED card to allow input of

more than 9 digits (see Section 7.22 of the manual)

Advanced geometry 21

Scoring with lattices: the ROTPRBIN card

• Cartesian and cylindrical meshes (e.g. USRBIN) are geometry-independent

• If superimposed on a replica, they will score the desired quantity at that location (i.e.

not in the prototype or another replica)

• A mesh covering the prototype can be cloned and applied to a replica via the
ROTPRBIN card, which allows to apply a transformation to USRBIN or EVENTBIN

scorings

• As with lattices, the inverse transformation must be used in the ROTPRBIN card, i.e. it is not the

scoring mesh that is transformed, but the transformation is applied to the scoring location,

mapping it onto the initial mesh

Advanced geometry 22

Scoring with lattices: the ROTPRBIN card

Advanced geometry 23

• Example (slight variation of the lattice template):

• 1 GeV proton beam impinging on Cu cylinder; a replica of the cylinder is downstream and tilted

• We wish to apply an R-Φ-Z proton fluence USRBIN to each object

• We define the mesh for the prototype, then clone and rename it, and add a ROTPRBIN card
associating it with the transformation used for the replica

Mesh on
prototype

Mesh on
replica

Prototype Replica

Keep in mind…

• Lattice nesting is not allowed!

• Multiple prototypes and multiple replicas can be defined and coexist in the same

geometry

• A LATTICE card needs to be included for each one

• The name or number assigned to a lattice in the LATTICE card is used to identify

the replica in all user routines and scoring

• Prototypes are assigned the lattice number 0

• ATTENTION: Scoring a quantity by region when lattices are involved will give the

sum of the quantity over the prototype and all replicas; this is useless in most cases

• Use the special per region per lattice scoring (see WHAT(1) of USRBIN card)

• The fluscw.f user routine can be applied to various scorings (USRBIN,

USRTRACK, …) to filter scoring based on the lattice number

Advanced geometry 24

The lattic routine

• The lattic.f user routine can alternatively be used to define the transformations used to

map the lattice replicas onto the corresponding prototypes

• The SDUM of the (still necessary) LATTICE card should be left blank in this case

• Its use is only mandatory to describe a mirrored geometry, which generally cannot be

achieved via roto-translations alone, unless the prototype already has some symmetry

• It can also be helpful when placing a large number of replicas according to a simple rule

(e.g. a detector array)

SUBROUTINE LATTIC (XB, WB, DIST, SB, UB, IR, IRLTGG, IRLT, IFLAG)

XB, WB: vectors with the current particle position and direction

IR: current region number

IRLTGG: current lattice number (it may optionally be defined in the LATTICE card)

The routine must return the SB and UB vectors containing the position and direction of the particle

transported to the prototype

Advanced geometry 25

The lattic routine: mirroring example

• Consider an object that cannot be mirrored using only roto-translations:

• We can use a simple lattic routine to achieve the desired effect

• The routine must transform coordinates and direction cosines from the replica to the

prototype

• A LATTICE card is still needed, but the SDUM (transformation) is left empty:

Advanced geometry 26

The lattic routine: mirroring example

• The routine must return transformed

coordinate and direction cosine vectors SB

and UB:

• The LATNOR entry transforms the direction

cosines UN of the vector normal to the

surface in the prototype cell to the lattice

cell number IRLTNO

Advanced geometry 27

* | First time initialization:

IF (LFIRST) THEN

* Get lattice number

CALL GEON2L ('Object2 ', IREP, IRTLAT, IERR)

LFIRST = .FALSE.

END IF

[...]

IF (IRLTGG .EQ. IREP) THEN

SB (1) = XB (1)

SB (2) = XB (2)

SB (3) = -XB (3) + 40.0D0

UB (1) = WB (1)

UB (2) = WB (2)

UB (3) = -WB (3)

END IF

Prototype Replica

ENTRY LATNOR (UN, IRLTNO, IRLT)

[...]

UN (1) = UN (1)

UN (2) = UN (2)

UN (3) = -UN (3)

Finally

Get the lattice number

Geometry-related auxiliary routines

• These can be called inside user routines, preferably only the first time (usually under the IF

(LFIRST) condition) and saving the required information

• Convert the region number to region name and vice-versa

CHARACTER*8 REGNAM

CALL GEON2R(REGNAM, NREG, IERR) Region name to region number

CALL GEOR2N(NREG, REGNAM, IERR) Region number to region name

• IERR=0 in case of success

• Convert the lattice number to region name and vice-versa

CHARACTER*8 LATNAM

CALL GEON2L(LATNAM, NLATT, IRTLAT, IERR) Lattice name to lattice number

CALL GEOL2N(NLATT, LATNAM, IRTLAT, IERR) Lattice number to lattice name

• IERR=0 in case of success

• The index of the associated roto-translation (if present) is returned in IRTLAT

Advanced geometry 28

Geometry-related auxiliary routines

• Roto-translation routines
DIMENSION XPOINT (NPOINT), YPOINT (NPOINT), ZPOINT (NPOINT)

SUBROUTINE DOTRSF (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)

Applies, with a possible translation included, the KROTAT transformation (defined by ROT-DEFI) to
NPOINT points, defined in the X/Y/ZPOINT arrays

SUBROUTINE UNDOTR (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)

Applies the inverse transformation, with a possible translation included

SUBROUTINE DORTNO (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)

Applies the KROTAT transformation without the possible translation

SUBROUTINE UNDRTO (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)

Performs the inverse transformation, without the possible translation

Advanced geometry 29

