Exercise: magnetic \& electric fields

Apply fields to a simple beamline

The problem

- We will use the beamline constructed in the geometry exercise
- The first objective is to use the dipole to deflect the incoming beam (previously impacting on the beam dump) exactly onto the z-axis and through the quadrupoles
- Then, we will change the beam characteristics and use the quadrupoles to focus it at a desired location
- As an extra problem, we will accelerate the protons with an electric field

The input file

- You can start from the provided input or from your own solution to the geometry exercise, if complete
- All the magnets are in place and the initial beam is defined

Apply magnetic field to the dipole and run

1. Define a dipole field (MGNCREAT) and apply it to the dipole replica (MGNFIELD)

- What is the correct magnetic field strength B to deflect the incoming beam by an angle $\theta=20^{\circ}$ and deflect it onto the z-axis? The strength is given by:

$$
B[T]=\frac{p\left[\frac{e V}{c}\right]}{c\left[\frac{m}{s}\right] \cdot R[m]}
$$

where p is the momentum, c is the speed of light and R is the required bending radius, already \#define'd in the input (as Rbend)
2. Run the input (just a few particles are enough) and plot the proton fluence scoring on the $x-z$ plane (i.e. top view of the beamline)

- Is the beam brought onto the z-axis? If not, check your input.

Apply magnetic fields to the quadrupoles

- The three quadrupoles will be in an FDF configuration (Focusing-Defocusing-Focusing)
- By convention, "focusing" means "focusing on the horizontal plane for positively charged particles")

3. Define a focusing and a defocusing quadrupole field (MGNCREAT) and apply the focusing field to Q1 and Q3, and the defocusing one to Q2 (MGNFIELD)

- What is the difference between the two? Just a 90° azimuthal rotation!
- Apply the following gradients (careful with the unit):
- $g_{\mathrm{Q} 1}=25.268 \mathrm{~T} / \mathrm{m}$
- $g_{\mathrm{Q} 2}=28.683 \mathrm{~T} / \mathrm{m}$
- $g_{\mathrm{Q} 3}=46.449 \mathrm{~T} / \mathrm{m}$

4. Plot the fields in the quadrupoles on the transverse plane ($x-y$) and check that the quadrupole configuration you have defined is indeed correct

Adjust beam parameters and run

- If you run now (with the pencil beam) nothing will happen, since the beam will still be encountering zero field on the z-axis inside the quadrupoles

5. Change the beam parameters so that the effect of the quadrupoles can become apparent

- Define a $\pm 3 \%$ uniform momentum spread
- Define a Gaussian divergence with $\sigma=5 \mathrm{mrad}$
- Define a Gaussian beam profile with $\sigma=2.5 \mathrm{~mm}$

6. Run 5 cycles of 50000 primaries each; since the beam should not be hitting anything, this will be quite fast.
7. Plot the proton fluence scoring on the $x-z$ plane (i.e. top view of the beamline) and on the $y-z$ plane (side view). Observe the action of the quadrupoles and the focusing of the beam on both planes at around $\mathrm{z}=3 \mathrm{~m}$.

Extra problem: electric field

- Let's give a small push to the protons after they exit the beamline
- Define a vacuum region within an RCC placed around $z=300 \mathrm{~cm}$, with a radius of 5 cm and a length of 20 cm
- Apply an electric field to this region so that the protons receive an additional 50 MeV of energy
- What should be the magnitude of the electric field component along the z-axis (in $\mathrm{kV} / \mathrm{cm}$) to achieve this?
- Add two USRBDX scorings to score the energy spectrum of the incoming and outgoing protons in this region
- Run once more and plot the energy spectrum of protons entering and exiting the electric field region. Can you observe the acceleration?

Results

Proton fluence with pencil beam

- The dipole deflects the incoming beam onto the z-axis

Quadrupole fields

Proton fluence with $\mathrm{dp} / \mathrm{p}=3 \%, \Delta \varphi=5 \mathrm{mrad}(\sigma), \Delta x / y=2.5 \mathrm{~mm}(\sigma)$

Acceleration with electric field

Magnetic and electric fields exercise

