
Ad van ced co u rse – ANL , Ju n e 2023

User routines

How to tailor your needs to the FLUKA environment

Outline

• Introduction to user routines

• Motivations

• How to compile and link to FLUKA

• Most important commons

• User routine usage

• Classification of user routines

• usrglo, usrini: user-defined initialization

• usrmed & MAT-PROP: user defined medium properties

• stupre/strprf: intercepting the particle stack

• comscw, fluscw: weighting scored quantities (energy, fluences…)

• usrrnc: residual nuclei scoring

User routines 2

Why User Routines?

FLUKA naturally provides plenty of “cards” to simulate most conceivable physics

cases, without a single line of code. However, there are a few exceptions:

• You want to simulate a specific scenario, which doesn’t fit well

with the basic FLUKA usage

• You need to extract information that are not provided naturally by

scoring cards

Express your needs in dedicated FORTRAN

User Routines

User routines 3

How to compile

• Flair natively offers a

compiler, as introduced in the

FLUKA environment lecture.

• This is not the only

possibility, the user can also:

• Link and compile via terminal

• Write a makefile

User routines

From the FLUKA

environment lecture

4

What is available for users

• Once the user routine has been written or modified, the user needs to:
a. Compile each source routine into an object file: /usr/local/fluka/bin/fff

b. Link each object file to the fluka executable*: /usr/local/fluka/bin/lfluka

• As good practice, try to keep everything in your working directory

* For simulations requiring the DPMJET and RQMD packages, add the -d option, or use ldpmqmd

instead of lfluka

User routines 5

mysource.f

myroutine.f

etc.f

mysource.o

myroutine.o

etc.o

fff

lfluka

myexecutable.x

Do everything

outside the

installation

folder

fff xxx.f

fff yyy.f

lfluka -o myfluka xxx.o yyy.o

A possible makefile

FLUKA=/usr/local/fluka/ # my installation path

FFF=$(FLUKA)/bin/fff # compiler

LFLUKA=$(FLUKA)/bin/lfluka # linker, I don’t need DPMJET

LFLUKA=$(FLUKA)/bin/ldpmqmd

#

SRCFILES := $(wildcard ./*.f) # source files are in the same folder as the makefile

OBJECTS := $(patsubst %.f, %.o, $(SRCFILES)) # objects have the same name, but a .o extension

PROGRAM=myexecutable.x # name of the executable

#

RULES

#

.f.o: # compile the source for each object missing

$(FFF) $<

#

TARGETS

#

all: $(PROGRAM)

#

$(PROGRAM): $(OBJECTS) # link the objects to generate an executable

echo $(OBJECTS)

$(LFLUKA) -m fluka -o $@ $^

#

clean:

rm -f $(PROGRAM) *.o *.map *.FOR

User routines 6

User routines zoology

User global settings

usrglo.f

User run control
usrini.f usrein.f

usrout.f usreou.f

ftelos.f

Event generation, physics, kinematics

source.f soevsv.f

udcdrl.f formfu.f

lppsok.f ustckv.f

Particle stack interception

mdstck.f stupre.f

stuprf.f pshckp.f

FLUKA output

comscw.f fluscw.f

endscp.f fldscp.f

musrbr.f lusrbl.f

fusrbv.f usrrnc.f
Medium properties

magfld.f

usrmed.f

elefld.f

usrhsc.f

Optical photons

abscff.f dffcff.f

frghns.f ophbdx.f

queffc.f rflctv.f

rfrndx.f wvlnsh.f

Biasing

ubsset.f

usimbs.f

+ mgdraw.f

Do not lose the overview!

Lots of routines, we will explore the usage of a selected few

User routines 7

User-defined initialisation

• These routines are called at various moment during the

simulation

• Some routines are activated by a corresponding card in FLUKA

• They can be used to perform any possible action outside of the

event loop

User routines 8

Before any other

initialization

Each time a USRICALL

card is read in the input Main event loop

Each time a USROCALL

card is read in the input

usrglo.f

USRGCALL

usrini.f

USRICALL
usrein.f usreou.f

usrout.f

USROCALL ftelos.f

Primary

particle in

End of the

single history

User global settings

usrglo.f

User run control
usrini.f usrein.f

usrout.f usreou.f

ftelos.f

ftelos.f

At the end of the simulation, we want to

save some information in a dedicated file.

Normally, plenty of information is already

present in the .out output file

Why?

Quality of life improvement!

usrglo.f

We want to supply another routine

with numerical input parameters

without recompiling the executable.

The values can be shared via

appropriate commons

Card in the input file:

Variable assignment in usrglo.f:

User-defined initialisation: example(s)

User routines 9

*...+....1....+....2....+....3..

USRGCALL 123. 456.

MYVARA = WHAT(1)

MYVARB = WHAT(2)

OPEN (UNIT = 99, FILE = FILNAM, STATUS = 'OLD', FORM =

& 'FORMATTED')

100 FORMAT (I20,3X,A)

110 FORMAT (ES20.7,3X,A)

WRITE (99,*) "#####"

WRITE (99,100) TPMEAN, "s -> Mean CPU time per primary"

WRITE (99,110) NCASE, " -> Total number of primaries"

User-defined medium properties
• These routines help to define the electric (elefld.f) and magnetic

(magfld.f) fields in the geometry

• usrhsc.f allows the user to apply density scaling factors

• usrmed.f is a generic routine called for each material tagged via the

MAT-PROP card

User routines 10

Medium properties

magfld.f

usrmed.f

elefld.f

usrhsc.f

Non trivial magnetic fields: magfld.f Particle re-injection in the geometry: usrmed.f

*Now also with magnetic cards!

usrmed.f example (1)

• In accelerator physics, we typically have a series of elements repeated in the line; we can exploit this to

minimize the geometry complexity in the input file

• Let’s take for instance an infinite series of dipoles: we can model all the dipoles in the geometry, or we

can use just one element and apply a “pacman” approach, where the particles are transported on the

other side when they reach the edge

User routines 11

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

PLA epla -1.9529E-03 0.09.9999E-01 0.0 0.0309.500384

PositionDirection

usrmed.f example (2)

• We set our region for reinjection in gold and we activate the user-defined medium routine there

• When a particle goes in this region, usrmed.f is called

User routines 12

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

MAT-PROP 1.0 GOLD USERDIRE

SUBROUTINE USRMED (IJ, EKSCO, PLA, WEE, MREG, NEWREG, XX, YY, ZZ,

& TXX, TYY, TZZ, TXXPOL, TYYPOL, TZZPOL)

* ...

* Input variables: *

* ij = particle id *

* Eksco = particle kinetic energy (GeV) *

* Pla = particle momentum (GeV/c) *

* Wee = particle weight *

* Mreg = (original) region number *

* Newreg = (final) region number *

* Xx,Yy,Zz = particle position *

* Txx,Tyy,Tzz = particle direction *

* Txx,Tyy,Tzzpol = particle polarization direction *

INCLUDE 'dblprc.inc'

INCLUDE 'dimpar.inc'

INCLUDE 'iounit.inc'

*

* *

* Copyright (C) 2003-2019: CERN & INFN *

* All Rights Reserved. *

* *

* USeR MEDium dependent directives: *

* *

Typical commons and copyright

declaration:

usrmed.f example (3)

Core of the routine: angle between

two consecutive dipoles

Flip z, plus a tiny tolerance to avoid

numerical errors (x and y will

remain the same)

Rotate the direction of the particle

(and the polarization, not included

here for brevity)

User routines 13

PARAMETER (ALPHOU = -0.003905870294105114D+00)

LOGICAL LFIRST

SAVE LFIRST, SINALP, COSALP

DATA LFIRST / .TRUE. /

*

IF(LFIRST) THEN

LFIRST = .FALSE.

SINALP = SIN (ALPHOU)

COSALP = COS (ALPHOU)

END IF

*

ZZNEW = -ZZ

IF(ZZNEW .LT. ZERZER) THEN

ZZ = ZZNEW+1D-08

ELSE

ZZ = ZZNEW-1D-08

END IF

*

DELTAX = TXX

DELTAZ = TZZ

TZZ = DELTAZ * COSALP + DELTAX * SINALP

TXX = DELTAX * COSALP - DELTAZ * SINALP

usrmed.f example (4)

• Electron and photons (down to 1 MeV) resulting from a single muon decay at 5 TeV

are shown in light blue and yellow.

• The particles are re-injected many times. Huge simplification for the simulation!

User routines 14

User-defined stack interception

• The first routine (mdstck.f) is called after a nuclear interaction,

before any biasing.

• All the other routines are called before pushing FLUKA particles*
(stuprf.f), EMF particles (stupre.f) or Cherenkov photons

(pshckp.f) to the stack.

User routines 15

SUBROUTINE MDSTCK (IFLAG, NPSECN)

* ...

* Iflag = 1: standard Kaskad call *

* = 2: Kaskad call after elastic *

* = 3: Kasneu call *

* = 4: Emfsco call *

*

INCLUDE 'emfstk.inc'

INCLUDE 'fheavy.inc'

INCLUDE 'genstk.inc'

INCLUDE 'trackr.inc'

*

RETURN

Particle stack interception

mdstck.f stupre.f

stuprf.f pshckp.f

mdstck.f

Knowing how many particles are
produced (NPSECN), you can access

those on the secondary particle stack
(genstk.inc)

* Photonuclear and electro-nuclear secondaries
are always managed by stuprf.f. Synchrotron

radiation photons are pushed directly to the stack.​

stupre.f/stuprf.f

• These two routines are complementary and they allow the user to assign a value to

one or more stack user variables when the corresponding particle is loaded into one

of the stacks

User routines 16

Common block: FLKSTK EMFSTK OPPHST TRACKR

LOGICAL LOUSE LOUEMF LOUOPP LLOUSE

INTEGER*11 ISPARK IESPAK ISPORK ISPUSR

DOUBLE

PRECISION*11
SPAREK ESPARK SPAROK SPAUSR

By default copied (in stupre.f/stuprf.f)

except in case of electromagnetic interactions

Pushed to trackr.inc when the particle

is transported (user does not see this part)

TRACKR is

accessible in
mgdraw.f

In stupfr.f, we want to use the rest of the ISPUSR array to store the particle ancestors information

stupre.f/stuprf.f example: particle ancestors

• We are scoring some specific process (e.g. a background to an experiment). But where are

those particles coming from?

User routines 17

DO 200 ISPR = 1, MKBMX2

ISPARK (ISPR,NPFLKA) = ISPUSR (ISPR)

200 CONTINUE

DO 200 ISPR = 1, MKBMX2 - 1

ISPARK (ISPR + 1,NPFLKA) = ISPUSR (ISPR)

200 CONTINUE

In mgdraw.f, we save the particle species in a dedicated user variable after each particle interaction

ENTRY USDRAW (ICODE, MREG, XSCO, YSCO, ZSCO)

ISPUSR(1) = JTRACK

RETURN

Default lines: they just copy ISPUSR

The mother particle species is at ISPR=2

The n-th grandmother is at ISPR=2+N

User routines for scoring

• All these routines are used when advanced scoring is needed.

• Among the various, we will focus only on comscw.f, fluscw.f

and usrrnc.f

User routines 18

FLUKA output

comscw.f fluscw.f

endscp.f fldscp.f

musrbr.f lusrbl.f

fusrbv.f usrrnc.f

usrrnc.f

Called each time a

residual nucleus is

produced

fluscw.f

Weighting fluence,
current and yield

comscw.f

Weighting deposited

energy, stars or

residual nuclei

WHAT(6) > 0 WHAT(3) > 0 WHAT(5) > 0

They are activated by the card:

USERWEIGH

fluscw.f/comscw.f: structure

• Useful variables (common SCHOLP):

ISCRNG = 1 --> Boundary crossing estimator

ISCRNG = 2 --> Track length binning

ISCRNG = 3 --> Track length estimator

ISCRNG = 4 --> Collision density estimator

ISCRNG = 5 --> Yield estimator

JSCRNG = # of the binning/estimator

• This function is called just before a quantity is

scored. It provides access to information about

the particle which is being scored and the type

of scoring.

• The user can modify FLUSCW (or COMSCW) to

apply a weight different than one.

User routines 19

DOUBLE PRECISION FUNCTION FLUSCW (IJ , PLA , TXX , TYY ,

& TZZ , WEE , XX , YY ,

& ZZ , NREG , IOLREG, LLO ,

& NSURF)

* ...

* Input variables: *

* *

* Ij = (generalized) particle code (Paprop numbering) *

* Pla = particle laboratory momentum (GeV/c) (if > 0), *

* or kinetic energy (GeV) (if <0) *

* Txx,yy,zz = particle direction cosines *

* Wee = particle weight *

* Xx,Yy,Zz = position *

* Nreg = (new) region number *

* Iolreg = (old) region number *

* Llo = particle generation *

* Nsurf = transport flag (ignore!) *

* *

* Output variables: *

* *

* Fluscw = factor the scored amount will be multiplied by *

* Lsczer = logical flag, if true no amount will be scored *

* regardless of Fluscw *

fluscw.f comscw.f
fluence-like

quantitites

star-like

quantitites

specular

fluscw.f/comscw.f: example

• Another example taken from the muon collider: we have a target on which protons impact, and we need to extract a

fraction of the power from it.

• How should an extraction channel look like? We want to score the particle fluence weighting it by the particle kinetic

energy.

User routines 20

DOUBLE PRECISION FUNCTION FLUSCW (IJ , PLA , TXX , TYY ,

& TZZ , WEE , XX , YY ,

& ZZ , NREG , IOLREG, LLO ,

& NSURF)

* ...

INCLUDE 'paprop.inc'

*

IF (PLA .LE. ZERZER .AND. IJ .GT. 0) THEN

E_KIN = -PLA

ELSE IF (IJ .GT. 0) THEN

E_KIN = SQRT (PLA**2 + AM (IJ)**2)

& - AM (IJ)

ELSE

E_KIN = ZERZER

ENDIF

FLUSCW = ONEONE * E_KIN

LSCZER = .FALSE.

RETURN

The function

description is

skipped here

Apply a weighting

factor equal to the

kinetic energy of

the particle (and

kill heavy ones)

fluscw.f/comscw.f: example

Projection of the energy fluence on the xz plane.
Energy fluence at z = 1700 cm. The hotspot at x =

80 cm is where the extraction channel for the spent

beam should be placed

User routines 21

* ..+....1....+....2....+....3....+....4....+....5....+....6....+....7..

USERWEIG 1

USRBIN 10 ALL-PART -24 100 100 1760ene_flu

USRBIN -20 -100 0 60 50 300 &

usrrnc.f: structure

• Subroutine USRRNC is called every time a residual nucleus is stopped, if option USERWEIG has been

requested with WHAT(5) > 0.

• It provides all the information of the nucleus (atomic and mass number, isomeric state and position). The
weight WEE of the residual can be used to kill it or to perform biasing

• Warning: biasing via weight is dangerous, since the normalisation of the results will not be managed by

FLUKA

User routines 22

SUBROUTINE USRRNC (IZ, IA, IS, X, Y, Z, MREG, WEE, ICALL)

INCLUDE 'dblprc.inc'

INCLUDE 'dimpar.inc'

INCLUDE 'iounit.inc'

* ...

* Argument list:

* IZ : atomic number of the residual nucleus

* IA : mass number of the residual nucleus

* IS : isomeric state of the residual nucleus

* X, Y, Z : particle position

* MREG : number of the current region

* WEE : particle weight

* ICALL : internal code calling flag (not for general use)

usrrnc.f: example

• This routine is called each time a residual nucleus is produced

• A trivial usage could be to print out the information of those residual nuclei

• Another interesting opportunity is to filter out some non-interesting radionuclides

• In this very simple example, the 60Co is filtered out and killed as soon as the residual nucleus is

deposited. You can do also the opposite, and filter out all but one interesting nuclide

User routines

SUBROUTINE USRRNC (IZ, IA, IS, X, Y, Z, MREG, WEE, ICALL)

* ...

IF (IZ .EQ. 27 .AND. IA .EQ. 60) THEN

WEE = ZERZER

ENDIF

RETURN

Hardcoded variables. Can

we make it more elegant

with USRGCALL?

23

fusrbv.f: example radial scoring

• When the user asks for a user-defined USRBIN, three routines are
called: musrbr.f, lusrbl.f and fusrbv.f. These select the bin where the

quantity is saved

• How can I ask for a radial binning?

• You can ask for a user-defined USRBIN, which scores all quantities on a binning

which is defined by the user.

• As of today, the 3D binning consists of two discontinuous variables (by default the

region and the lattice number) and a discontinuous one (by default 0).

User routines 24

fusrbv.f: example radial scoring

• Example: we have a 1 GeV isotropic electron beam impinging on

half a sphere. We want the radial energy deposition

• To ask for a radial binning, we do not touch the first two variables

(per region per lattice binning), while we modify fusrbv.f

• Downside: for the data analysis you are on your own!

User routines

DOUBLE PRECISION FUNCTION FUSRBV (IJ, PCONTR, XA, YA, ZA,

& MREG, ICALL)

...

FUSRBV = SQRT(XA ** 2 + YA ** 2 + ZA ** 2)

RETURN

1 GeV electrons on a 10

cm radius half sphere

25

Important functions and routines

• Do not reinvent the wheel!* FLUKA

offers an abundant selection of

functions and routines for your

usage.

User routines

* Except for didactic purposes

From the FLUKA

environment lecture

26

Most important commons

• Always to be added:

• dblprc.inc contains as parameters most commons physical and mathematical constants.

Here lies the implicit declaration for variables: IMPLICIT DOUBLE

PRECISION (A-H,O-Z)

• dimpar.inc dimensions of the most important arrays

• iounit.inc logical input and output unit numbers (1 to 19 are reserved)

• Few tips:

• Use DBLPRC parameters when possible

• Pay attention to typos in numerical constants! With implicit declaration (as of today):

TWOTHI = ⅔, TWOTHR = 0

• If you are using a common block, do not redefine an existing variable within your routines

User routines 28

Other important commons

The most important commons can also be found in the FLUKA manual (13.1).

A few selected ones are:

• BEAMCM properties of primary particles as defined by BEAM and BEAMPOS

• EMFSTK electromagnetic stack (for e+/- and photons)

• SOURCM user variables and information for a user-written source

• FHEAVY stack of heavy secondaries created in nuclear evaporation

• FLKMAT material properties

• RESNUC properties of the current residual nucleus

• FLKSTK main FLUKA particle stack

• TRACKR TRACKs Recording (properties of the currently transported particle and its

path)

• PAPROP particle properties (masses, charges, etc.)

User routines 29

