
Advanced course – ANL, June 2023

User routines: exercise

How to tailor FLUKA to non-standard user needs

Introduction and scope

• Case study

• Toy model electron/positron

accelerator

• User routine usage

• usrmed.f to reinject particle from

one side to the other

• fluscw.f: momentum/energy

fluence

User routines exercises

Case study

• We want to bend a beam of 100 GeV positrons with a series of dipoles. As

arbitrary value, we consider the magnetic field to be 0.5 T. Each magnet is 6

meters long

• A geometry consisting of a dummy magnet inserted in a tunnel is provided

• We do not want to simulate this geometry by using lattices and transformations

(i.e. having many singular elements), but by exploiting the symmetry and

reinjecting the particles from one side to the other

User routines exercises

Problem 1: trivial

• Check if the geometry is correctly implemented: at which angle does the beam exit

the magnet?

• Derive the angle from the magnetic rigidity formula

• Check this value in the geometry

• Optional: can you use mgdraw to retrieve it? How accurate is it?

User routines exercises

Problem 2: not so trivial

• Now we know how the beam behaves in the machine. We want to reinject it. You
need to write a usrmed.f routine that:

• Is activated only when the particle leaves the magnet. (Maybe you can activate it only in

gold!)

• Flips the beam position across the axis (z becomes –z)

• Rotates the beam direction in the correct position

User routines exercises

Problem 2: little hint

• If you want, you can proceed and start writing your routine from scratch. It can be a frustrating but

certainly rewarding experience. But, in case you are lost, start from the one you have already.

• Once finished, try to shoot positrons whose momentum is larger or smaller than the nominal one.

Where do they go?

• Optional: what happens if you shoot the ideal particle? Infinite tracking?! Try enabling the

synchrotron radiation

User routines exercises

PARAMETER (ALPHOU = ???)

PARAMETER (TOLKIC = 0.1D+0)

IF(LFIRST) THEN

* It can be a good idea to initialize the sine

* and cosine value for the rotation matrix

SINALP = ???

COSALP = ???

LFIRST = .FALSE.

END IF

Insert the angle of deflection when the

particle leaves the magnet. (This is half

of the total angle of deflection from the

bending magnet!)

Initialise the matrix element of the rotation

Problem 2: little spoiler

User routines exercises

* Position part: flip the z coordinate

XX_OLD = XX

ZZ_OLD = ZZ

XX = ???

ZZ = ???

Just change the sign for z!

Write the rotation matrix:
* Direction part: rotate the vector (it is a

* simple rotation matrix)

TXX_OLD = TXX

TZZ_OLD = TZZ

TXX = ???

TZZ = ???

PARAMETER (ALPHOU = ???)

PARAMETER (TOLKIC = 0.1D+0)

IF(LFIRST) THEN

* It can be a good idea to initialize the sine

* and cosine value for the rotation matrix

SINALP = ???

COSALP = ???

LFIRST = .FALSE.

END IF

Insert the angle of deflection when the

particle leaves the magnet. (This is half

of the total angle of deflection from the

bending magnet!)

Initialise the matrix element of the rotation

Problem 2: what to expect

• A USRBIN has been provided in the inputfile. Try plotting the total particle fluence

in both cases

• Optional: can you generate similar plots with USRDUMP in Geoviewer?

User routines exercises

p > 100 GeV p < 100 GeV

Problem 3: scoring energy fluence

• Now you have the equivalent of an infinite series of dipoles.

• Imagine that, for some reason, when a bunch is in the middle of the magnet, your

magnets lose part of their field and they go from 0.5 to 0.4 T. Oh no! The

positrons will impact on the machine.

• We want to score several quantities, but mainly:

• The energy deposited in the machine

• The energy fluences for each particle type

User routines exercises

fluscw.f

Problem 3: what to expect

• In the input file, you have 2 sets of USRBIN scoring: .23 and .24

• For all the scoring in .24 we just want to score the particle fluence

• In case of the scoring in .23, we want to score the particle fluence weighted by
their kinetic energy

• You need to write an appropriate fluscw.f user routine and activate it
via USERWEIG card

User routines exercises

Photon kinetic energy fluence: ϕE Photon fluence: ϕ

Problem 3: tips

User routines exercises

--

*

INCLUDE 'scohlp.inc'

INCLUDE 'paprop.inc'

*

FLUSCW = ONEONE

LSCZER = .FALSE.

* Put an IF condition to change FLUSCW only for the correct

* detectors (use JSCRNG)

IF (???) RETURN

* Ignore heavy ions:

IF (IJ .LE. -6) THEN

FLUSCW = ZERZER

RETURN

ENDIF

* Calculate the kinetic energy:

???

* Apply the weight:

FLUSCW = ???

LSCZER = .FALSE.

RETURN

=== End of function Fluscw ===

END

Debugging (example)

[me@localhost myFolder]$ /usr/local/fluka/bin/rfluka -g cgdb -e executable/fluka.x -N0 -M1 test.inp

New UI allocated

(gdb) b 86

Breakpoint 1 at 0x407b60: file mgdraw.f, line 90.

We ask for a breakpoint on line

86, it accepted it on line 90

(gdb) r

Starting program: myFolder/executable/fluka.x myFolder/test.inp

Debugging window: in the top part there is the

source, while instruction are given in the bottom.

You can:

• [s]tep to the next instruction

• go to the [n]ext line

• [b]ack[t]race: prints a stack trace, listing each

function and its arguments

• [p]rint variable value

• …and much more!

User routines exercises

Most important commons

• Always to be added:

• dblprc.inccontains as parameters most commons physical and mathematical constants.

Here lies the implicit declaration for variables: IMPLICIT

DOUBLE PRECISION (A-H,O-Z)

• dimpar.inc dimensions of the most important arrays

• iounit.inc logical input and output unit numbers (1 to 19 are reserved)

• Few tips:

• Use DBLPRC parameters when possible

• Pay attention to typos in numerical constants! With implicit declaration (as of today):

TWOTHI = ⅔, TWOTHR = 0

• If you are using a common block, do not redefine an existing variable within your routines

User routines exercises

Other important commons

The most important commons can also be found in the FLUKA manual (13.1).

A few selected ones are:

• BEAMCM properties of primary particles as defined by BEAM and BEAMPOS

• EMFSTK electromagnetic stack (for e+/- and photons)

• SOURCM user variables and information for a user-written source

• FHEAVY stack of heavy secondaries created in nuclear evaporation

• FLKMAT material properties

• RESNUC properties of the current residual nucleus

• FLKSTK main FLUKA particle stack

• TRACKR TRACKs Recording (properties of the currently transported particle

and its path)

• PAPROP particle properties (masses, charges, etc.)

User routines exercises

