

Radiation Protection calculations

Advanced course – ANL, June 2023

Outline

Exposure of persons and **activation of components and materials** are the core considerations for Radiation Protection (RP) related simulations

Topics treated in this lecture:

- External exposure to ionizing radiation of persons
- Activation
 - Potential internal exposure to ionizing radiation of persons
 - Radiological characterization
 - Clearance
 - Transport
 - Emission/Immission limits
 - Activation of liquids or gases in circuits

- Exposure of persons and activation of components and materials are the core considerations for Radiation Protection (RP) related simulations
- The particle cascades induced by the beam particle (prompt radiation) may trigger nuclear reactions that result in unstable radionuclides (activation)
- The decay of these radionuclides leads to residual radiation; present even when the beam has stopped
- Persons can be exposed to prompt radiation and/or residual radiation; both need to be estimated!

Exposure of persons

- The prompt radiation is related to the cascade generated by the primary beam
 - E.g. radiation penetrating a shielding structure when the beam is operating
 - Scored in pSv/primary
 - Normalization with beam intensity (e.g. primaries/h) is needed to get dose rates, e.g. (mSv/h)
- The residual radiation is related to an irradiation profile and a cool-down time
 - Radiation emitted by radionuclides generated during the irradiation
 - Scored in pSv/s
 - Normalization for beam intensity can be done via irradiation profile

Exposure of persons due to radiation fields

 RP quantities (ambient dose equivalent or effective dose [pSv]) are not physical quantities directly simulated
 Radiation Mean absorbed

• FLUKA estimates of these quantities are based on particle fluence:

fluence-to-dose conversion coefficients are applied to translate radiation fields into generalized particles -> [pSv cm²]

Generalized Particle Name	Units	Description
DOSE	GeV/g	Dose (energy deposited per unit mass)
DOSE-EQ	pSv	Dose Equivalent (AUXSCORE) based on ICRU sphere or human phantom
ACTIVITY	Bq/cm ³	Activity per unit volume – particularly useful with AUXSCORE and/or user routines
ACTOMASS	Bq/g	Activity per unit mass – particularly useful with AUXSCORE and/or user routines

Fluence-to-dose conversion coefficients

• Several fluence-to-dose conversion coefficients are available

• Ambient dose equivalent H*(10)

- Operational quantity for area monitoring (10mm depth in ICRU sphere)
- "AMB74" coefficient set, is the default choice for dose equivalent calculation
- i.e.: it is possible to score DOSE-EQ without an **AUXSCORE** card (see later)
- The "AMB74" coefficients are based on ICRP74 recommendations and Pelliccioni data
- M. Pelliccioni, "Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code", Radiation Protection Dosimetry 88 (2000) 279-297

Fluence-to-dose conversion coefficients

Effective dose

- based on Monte Carlo simulations of human phantoms in certain radiation fields
- Conversion coefficients sets depending on different recommendations and weighting factors: e.g. ICRP74, ICRP116, ICRP60, and Pelliccioni
- Recommended sets: ICRP 116 (ED* in AUXSCORE card)
- Conversion coefficients sets implemented for different irradiation geometries:
 - Anterior-Posterior (AP)
 - Posterior-Anterior (PA)
 - Left lateral (LLAT)
 - Right lateral (RLAT)
 - Rotational (ROT)
 - Isotropic (ISO)
 - Working Out Radiation Shielding Thicknesses (WORST):

It is the (actual) worst of all irradiation geometries It is recommended for shielding design

Fig. 3.2. Schematic representation of the idealised geometries considered. AP, antero-posterior; PA, postero-anterior; LLAT, left lateral; RLAT, right lateral; ROT, rotational; ISO, isotropic.

ICRP, 2010. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116, Ann. ICRP 40(2–5). https://journals.sagepub.com/doi/pdf/10.1177/ANIB_40_2-5

Fluence-to-dose conversion coefficients

 Defined for protons, neutrons, charged pions, muons, photons, electrons, alphas; conversion coefficients for other particles are approximated by these

Particle Type	Set of conversion coefficients (ICRP116)	Particle Type	Set of conversion coefficients (ICRP116)
proton	proton	anitproton	proton
electron	electron	antineutron	neutron
positron	positron	positive kaon	positive pion
photon	photon	negative kaon	negative pion
neutron	neutron	lamda	neutron
positive muon	positive muon	antilambda	neutron
negative muon	negative muon	negative sigma	negative pion
positive pion	positive pion	positive sigma	positive pion
negative pion	negative pion		Approximatio

• Zero coefficient is applied to all heavy ions

Fluence-to-dose conversion coefficients – ICRP 116

- ICRP Publication 116 fluence-to-effective dose conversion coefficients for external radiation exposure implemented in FLUKA
 - Data tables for discrete energy values up to 10 GeV.
 - A linear extrapolation was implemented up to 10 TeV.
 - If the energy is >10 TeV the coefficient corresponding to 10 TeV is assigned.
 - If the energy is below the lowest tabulated value zero weighting is applied (except for neutrons and photons for which the lowest tabulated values is used).
 - The energy points are equally spaced in a logarithmic scale (ten points per each decade).
 - A cubic spline was used to interpolate between the ICRP tabulated coefficients in a log-log scale.
 - Implemented for AP, PA, ISO and WORST irradiation geometries (see slide 7)
 - LLAT, RLAT and ROT only for protons, photons and neutrons by default.

Fluence-to-dose conversion coefficients – ICRP 116

D. Bozzato, R. Froeschl. Implementation of ICRP116 Fluence to Effective Dose Conversion Coefficients in a FLUKA user routine, CERN EDMS 2439884, 2020.

Fluence-to-dose conversion coefficients – ICRU 95

Proposed quantities from International Commission on Radiation Units and Measurements (ICRU);

Not to be confused with the International Commission on Radiological Protection (ICRP)

- 1. Ambient dose
 - Conversion coefficients from ICRU95
- 2. Personal dose
 - 12 different conversion coefficients from ICRU95
 - Depending on the irradiation geometry
- 3. Directional and personal absorbed dose in the lens of the eyes
 - 8 different conversion coefficients from ICRU95
- 4. Directional and personal absorbed dose in the local skin
 - 6 different conversion coefficients from ICRU95

External Exposure Scoring

- DOSE-EQ is a track-length based scoring
- Scoring options:
 - USRBIN Mesh-based (cartesian or cylindrical):
 - Since volume of scoring bin in USRBIN mesh is know, volume normalization is automatically applied
 - pSv / primary particle for prompt radiation
 - USRBIN Region-based:
 - Volume of scoring region not know to code
 - Volume normalization is NOT applied
 - pSv * (region volume) / primary particle for prompt radiation
 - User needs to divide by region volume in post-processing
- Fluence-to-dose conversion coefficients for DOSE-EQ are based on ICRU spheres or human phantoms
 - Assumption: homogenous radiation field according to irradiation geometry
 - Bin sizes (dimensions ≥ 10cm) should be used to obtain meaningful results

Input option: AUXSCORE

- allows to associate scoring estimators with dose equivalent conversion factors
- allows to apply a filter within the scoring estimator for a specific generalized particle type

AU	XSCORE	Type: USRBIN ▼ Det: Target ▼	Part: PHOTON ▼ to Det: ▼	Set: EWT74 ▼ Step:		
Туре	Type of estimation drop down list	ator to associate with of estimator types (USRE	BIN, USRBDX)			
Part	Particle or iso Particle or part	Particle or isotope to filter for scoring Particle or particle family list				
Det to D	et Detector rang Drop down list	Detector range Drop down list to select detector range of type Type				
Step	Step in assigr	ing indices of detecto	r range			
Set	Conversion fa Drop down list	ctor set for dose equiv of available dose conve	valent (DOSE-EQ) scorin rsion sets	g		

Note: This card can be used for prompt and residual scorings.

Input option: AUXSCORE

- allows to associate scoring estimators with dose equivalent conversion factors
- allows to apply a filter within the scoring estimator for a specific nuclide (can be stable or unstable)

💡 AUXSCORE	Type: USRBIN 🔻	Part: 🔻	Set: 🔻
Delta Ray: 🔻	Z: 4	A: 7	Isomer: 0
	Det: Be7 🔻	to Det: 🔻	Step:

- TypeType of estimator to associate with
drop down list of estimator types (USRBIN, USRBDX...)
- Z Nuclide filtering atomic number Z
- A Nuclide filtering mass number A
- Isomer Nuclide filtering isomeric state

External Exposure - Example

Proton beam

- Pencil shape
- 100 GeV kinetic energy
- Hitting a Tungsten target
 - Radius 10 cm, Thickness 20 cm
- Target inside shielding structure
 - Concrete
 - Lateral: divided into several layers
 - Upstream of target
 - Cast Iron dump downstream
- Geometry is cylindrical symmetric
 - For fast convergence
- Optional:
 - Stainless steel container around target during residual transport

External Exposure - Example

Prompt effective dose rates – Contributions from various particle species

Rate

10⁶ %

Lo² Loubt F

Prompt Effective Dose Rate (1e8 p/s) - Charged Pions 10¹⁰(4/vSrl) 10⁸ (120/10 400 350 300 250 E 200 N 150 10⁴ Effective t Effective

500

R (cm)

1000

1500

Prompt Effective Dose Rate (1e8 p/s) - Muons

100

50

0

-500

0

External Exposure - Residual radiation

- The generation and transport of decay radiation (including α, β, γ, X-rays, and conversion electrons emissions) is possible during the same simulation which produces the radionuclides (one-step method)
- Consequently, results for production of residual nuclei, their time evolution, and residual doses due to their decays can be obtained in the same run, for arbitrary decay times and for a given irradiation profile.
 - Two notions of time for the prompt and residual transport.
 - Scoring during residual transport weighted by irradiation profile and cool-down time
- Different transport thresholds can be set for the prompt and decay radiation transport
 - as well as some (limited) biasing differentiation (see later slides)

Input option: RADDECAY [1/2]

- activates the simulation of the decay of the radioactive nuclides produced
- allows to modify biasing and transport thresholds for the transport of decay radiation

RADDECAY	Decays: Active	e 🔻 🛛 Patch Isom:	•	Replicas:	3.0
h/µ Int: ignore 🔻	h/µ LPB: ignore	e 🔻 h/μ WW:	ignore 🔻	e-e+ Int:	ignore 🔻
e-e+ LPB: ignore 🔻	e-e+ WW: ignore	🖲 🔻 Low-n Bias:	ignore 🔻	Low-n WW:	ignore 🔻
	decay cut: 0.0	prompt cut:	99999.0	Coulomb corr:	•

Decays

Activation mode

radioactive decays activated for requested cooling times

"activation mode": time evolution calculated analytically for *fixed* (cooling) times. Daughter nuclei as well as associated radiation is considered at these (fixed) times

Semi-Analogue mode

radioactive decays activated in semi-analogue mode

each radioactive nucleus is treated like all other unstable particles (random decay time, daughters and radiation), all secondary particles/nuclei carry time stamp ("age") Necessary to simulate radioactive sources [See beginner course]

- Patch Isom On isomer "production" activated
- Replicas#number of "replicas" of the decay of each individual nucleus

Input option: RADDECAY [2/2]

Requests the calculation of radioactive decays

e-e+ LPB: ignore ▼ e-e+ WW: ignore ▼ Low-n Bias: ignore ▼ Low-n WW: ignore ▼ decay cut: 0.0 prompt cut: 99999.0 Coulomb corr: ▼	RADDECAY h/µ Int: ignore ▼ e-e+ LPB: ignore ▼	Decays: h/µ LPB: e-e+ WW: decay cut:	Active ▼ ignore ▼ ignore ▼ 0.0	Patch Isom: h/µ WW: Low-n Bias: prompt cut:	▼ ignore ▼ ignore ▼ 99999.0	Replicas: e-e+ Int: Low-n WW: Coulomb corr:	3.0 ignore ▼ ignore ▼
---	---	---	---	--	--------------------------------------	--	-----------------------------

h/μ Int Low-n WW	switch for applying various biasing features only to prompt radiation or only to particles from radioactive decays – e-e+ WW is an important feature
decay cut, prompt cut	0.1 x input value is used as multiplication factors to be applied to e+/e-/gamma transport energy cutoffs (defined with EMF-CUT cards) -> maximum reduction factor of 10 possible

Examples:input value for decay cut = 10decay radiation production and transport thresholds are not
modified (0.1 x 10)input value for prompt cut = 200prompt radiation threshold increased by factor of 20 (0.1 x 200)

Special cases:

decay cut = 99999kill EM cascade for residual radiationprompt cut = 99999kill EM cascade for prompt radiation (important feature)

Input option: IRRPROFI

• defines the irradiation profile (irradiation times and beam intensities)

∆t: =180* day	p/s: 5.9e5	
∆t: = 185 * 86400 ∆t: =1.553e7	p/s: 0 p/s: 5.9e5	

Δt #irradiation time [second]

p/s #beam intensity [particles per second]

- zero intensity is accepted and can be used, e.g., to define beam-off periods
- Each card has 6 inputs with 3 durations / intensities (intercalated)
- Several cards can be combined.
- Sequence order is assumed from first card (top) to last (bottom)

Input option: DCYTIMES

• defines the decay (cooling) times measured from the end of the last irradiation period (t=0)

1 hour 8hours	1day 7days 1month 4month:	s	
DCYTIMES	t1: 3600.	t2: 28800.	t3: 8.64E4
	t4: 6.048E5	t5: 2.592E6	t6: 1.0368E7

t1.. t6 cooling time (in seconds) after the end of the irradiation Note: Several cards can be defined.

Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option **DCYSCORE** to assign that cooling time to one or more scoring detectors. A negative decay time is admitted: scoring is performed at the chosen time "during irradiation"

Input option: DCYSCORE [1/2]

• associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times (and the irradiation profile)

DCYSCORE	Cooling t: 3600. ▼ Det: Shielding ▼	to Det:	•	Kind: Step:	USRBIN ¥
USRBIN Type: X-Y-Z ▼ Part: ALL-PART ▼	Xmin: -250.0 Ymin: -200.	Unit: Xmax: Ymax:	70 BIN ▼ 150.0 200.0	Name: NX: NV:	Shielding 80.0 80.0

- Cooling tCooling time index to be associated with the detectorsDrop down list of available cooling times
- Kind Type of estimator: RESNUCLE, USRBIN/EVENTBIN, USRBDX, USRTRACK...
- Det .. to DetDetector index/name of kind (SDUM/Kind)Drop down list of available detectors of kind (Kind)

Step step lengths in assigning indices

Input option: DCYSCORE [2/2]

Important note:

All quantities are expressed per unit time when associated to a cool-down time

For example: RESNUCLE Bq (= 1/s)
 USRBIN fluence rate / dose rate (e.g. pSv/s)

In the semi-analogue decay mode, estimators can include the decay contribution (on top of the prompt one) if associated to **DCYSCORE** with a cooling time index -1.0

Transport thresholds

- Disclaimer:
 - Simulations where only effective dose and activation are relevant
 - Typical values for hadron machines
- Prompt transport
 - Neutrons down to thermal
 - Charged hadrons: couple of MeV
 - Muons: couple of tens of MeV
- Activation: threshold energies of relevant nuclear reactions
 - Charged hadrons: couple of MeV
 - Photons: 2-8 MeV depending on materials (threshold for photo-nuclear reactions); if needed
- Residual dose rate: depends on contributing radionuclides
 - 30 keV to 100 keV for photons and e+/e- are typical choices
 - Recommendation (when EM thresholds prompt > EM thresholds residual)
 - Set thresholds for residual transport in EMFCUT
 - Go to thresholds for prompt transport via RADDECAY (prompt cut)

Transport thresholds

- Two practical examples:
 - 1. EMF ON; switch from 50 keV (residual) to 5 MeV (prompt) for photons
 - 2. EMF killed during prompt transport with RADDECAY

External Exposure – Residual radiation

- Residual effective dose rate in one-step simulation
- Example:

Residual Effective Dose Rate after 1 hour cool-down

Geometry modifications

ASSIGNMA

Mat: AIR V Mat(Decay): LEAD V

Reg: ResShield V to Reg: 🔻 Step:

Field:

Put lead during residual transport instead of Air during prompt transport in Region ResShield [simulation of transport container]

Region where Mat is not equal to Mat(Decay)

- Radioactive decay radiation originating from that • region is ignored.
- Radioactive decays in that region are not scored, e.g. in ACTOMASS.

Geometry modifications – Biasing residual transport

No biasing

- 1. Shielding container (stainless steel) during residual transport
- 2. Shielding regions set to AIR

Region importance biasing of shielding container layers

Activation

Activation

• Induced radioactivity is an integral part of many RP assessments

• Total and/or specific (mass) activity for all the various radionuclides

Examples of use cases

- Dose due to inhalation or ingestion (dose conversion coefficients needed)
- Comparison to regulatory limits
 - Clearance, transport, radioactive waste pathways, ...

Scoring options in FLUKA

- RESNUCLE → Region based
 - Gives access to full inventory information (radionuclide specific incl. isomeric states)
 - Weighting possible with custom **COMSCW** routine
 - Access to all production events via USRRNC routine
- USRBIN → Generalized particles: ACTOMASS and ACTIVITY
 - Only single value per bin reported
 - Typically selection and/or weighting needed
 - AUXSCORE or
 - Custom COMSCW with ISCRNG == 5 (Activity binning)

Scoring: <u>RESNUCLE</u> [1/3]

- Scoring of nuclei stopped in a given region.
 - Exception:
 - Stable nuclei that
 - are created in a region that already contains these nuclei in the material description of the region and
 - do not leave the region.
 - Note: One has to pay attention when interested in H or He production.
 - Results are expressed in [#nuclei/g/primary] (if the mass of the region is specified in the card!)
- All residual nuclei are scored when they have been fully de-excited down to their ground or isomeric state.
- Radioactive decay of residual nuclei over time can be simulated:
 - in combination with <u>RADDECAY</u>, <u>DCYSCORE</u>, <u>DCYTIMES</u> and <u>IRRPROFIle</u>)
 - via a user-written code (i.e, USRSUWEV).
 - results are expressed in [Bq] at the given (DCYSCORE) cool-down time

Scoring: RESNUCLE [2/3]

Scoring of residual nuclei or activity on a region basis

	RESNUCLE Max Z:		Type: All ▼ Max M:	Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO	
Туре		Type of	products to be scored					
		1.0	spallation products (all interactions, i.e. with m	inelastic inte	ractions except atment)	t for low-ene	ergy neutron	
		2.0	products from low-ene	rgy neutron ir	nteractions (pro	wided the		
		3.0	all residual nuclei are s	scored (if avai	ilable, see abov	ve)		
		<= 0.0	resets the default (= 1.	.0)				
Unit		Logical	output unit (Default = 1 ²	1.0)				
Max Z		Maximu	m atomic number Z of t	he residual nu	uclei distributio	n		
		Default:	according to the Z of the	element(s) of	the material as	ssigned to t	he scoring re	gion
Max M		Maximu Default: the scori	m M = N - Z - NMZ_{min} of maximum value accordin ng region.	the residual r ig to the A, Z	nuclei distribution of the element(on (NMZ _{min} : s) of the ma	= -5) aterial assigne	ed to

Scoring: RESNUCLE [3/3]

Scoring of residual nuclei or activity on a region basis

	RESNUCLE Max Z:	Type: All ▼ Max M:	Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO	
Reg		Scoring region name	1.0. cm @ Al		official states		
Vol		Volume of the region	in cm ³	REGS scoring	wiii include	all regions)	
		Default = 1.0 cm^3 The scored quantity is r	normalized b	y this number.			
		In case mass specific	quantity is r	needed, i.e. [Bq	/g], the ma	ss shall be	entered.
Name		Character string ident	tifying the de	etector (max. 1	0 characte	rs !!!!)	

Notes:

- 1. In the case of heavy ion projectiles, the default **Max M**, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments
- 2. Residual nuclei from low-energy neutron interactions are only scored if that information is available in the lowenergy neutron data set (see Manual)
- 3. Also, protons are scored (at the end of their path)

Input option: PHYSICS

Please activate the following cards if scoring of residual nuclei is of interest:

Evaporation of heavy fragments						
*PHYSICS	Type: EVAPORAT ▼	^{Model} :New Evap with heavy frag ▼				
Activation of coalescence treatment						
*PHYSICS	Type: COALESCE V	ActivateOn V				

Please activate the RQMD and DPMJET packages to enable transport of light fragments produced in COALESCE.

_____ ▼ ≥

Run tab

Generalized Particle: ACTOMASS

- Specific activity (per unit mass)
- Typically used within a **USRBIN** estimator associated by means of the **DCYSCORE** option.
 - Point mesh scoring!

🚍 USRBIN		Unit: 23 BIN 🔻	Name: Acto
Туре: R-Ф-Z poi	nt 🔻 Rmin: 0.0	Rmax: 400.	NR: 20.
Part: ACTOMAS	55 ▼ X: 0.0	Y: 0.0	ΝΦ: 1.
	Zmin: -500.	Zmax: 1700.	NZ: 120

- Results are expressed in:
 - [Bq/g] -with a Cartesian or cylindrical binning
 - [Bq cm3/g] region or a special binning is requested
- Can be used in association with AUXSCORE.
 - Filter a specific particle or particle family list & radionuclides

Activation – <u>ACTOMASS</u> applications

- 1. Filter contributions with AUXSCORE (exercise)
- 2. Simple <u>COMSCW</u> user routine with activity limits
 - H-3, Na-22, Fe-55 in concrete (without Eu)

• Results on next slide

INTEGER :: atomic_number, mass_number, isomer_number

LSCZER = **.FALSE.** COMSCW = ONEONE

*

- * ======= **In** order to compute doses ======== *
 - IF (ISCRNG .EQ. 5 .AND. TITUSB(JSCRNG)(1:3) .EQ. "ACL") THEN
 COMSCW = ZERZER

atomic_number = IZRSDL(1)
mass_number = IARSDL(1)
isomer_number = ISRSDL(1)
IF (isomer_number .EQ. 0) THEN
IF (atomic_number .EQ. 1 .AND. mass_number .EQ. 3) THEN
COMSCW = ONEONE / 1.0D+2
END IF
IF (atomic_number .EQ. 11 .AND. mass_number .EQ. 22) THEN
COMSCW = ONEONE / 1.0D-1
END IF
IF (atomic_number .EQ. 26 .AND. mass_number .EQ. 55) THEN
COMSCW = ONEONE / 1.0D+3
END IF
END IF
END IF
END IF

END IF

RETURN

Activation – <u>ACTOMASS</u> applications

Activation - Fluence spectra-based methods

Methodology

- 1. Score particle spectra with USRTRACK [FLUKA part]
 - Typically, neutrons, protons, charged pions and photons)
- 2. Weight spectra off-line with radionuclide production cross-sections
 - Production yields
- 3. Perform **build-up** and **decay** of radionuclides offline
- Several codes exist
 - <u>CINDER</u>
 - ORIGEN
 - <u>ActiWiz</u>
 - JEREMY
 - DCHAIN-PHITS
- Improved convergence with respect to event-based scorings
 - RESNUCLE, ACTOMASS

N. Walter, R. Froeschl, B. Cellerier, L. Ulrici. The Use of Integral Gamma-ray Measurement Chambers as Part of the Clearance Procedure for Waste from CERN's Accelerators and Experimental Facilities, IRPA 2014, Geneva, June 2014.

Activation – FLUSCW based methods

<u>FLUSCW</u> with (ISCRNG .EQ. 2 , i.e. Track-length binning)

USERWEIG • Weight: FLUSCW+
Resnuclei: No weight
Density Weight: COMSCW+

- Simple example of Al(n,α)Na-24 user routine
 - Reaction cross-sections in code
 - Two scorings
 - Saturation specific activity
 - Specific activity after 8 hours irradiation and 10 hours of cool-down

! Select neutrons only IF (IJ .EQ. 8) THEN ! Get the cross section for that energy ! Energy below minimum tabulated value IF (EKIN .LT. ENERGY(1)) THEN COEFF = ZERZER ! Energy above the maximum tabulated value ELSEIF (EKIN .GE. ENERGY(NENERGY)) THEN COEFF = CROSSSEC(NENERGY) ! All other cases: locate the closest energy ! with the helper subroutine SEARCHINDEX ELSE CALL LCT116(ENERGY, NENERGY, EKIN, ILOW) ! Particle's energy matches a tabulated one IF (EKIN .EO. ENERGY(ILOW)) THEN COEFF = CROSSSEC(ILOW) Perform a log-log interpolation between values otherwise ELSE COEFF = LOGINTRP(ENERGY(ILOW), ENERGY(ILOW+1), CROSSSEC(ILOW), CROSSSEC(ILOW+1), & & EKIN) ENDIF ENDIF ! Apply correct normalization ! Na-24 mass-specific activity (Bq/g) at saturation IF (SCORNAM(1:6) .EO. "Na24AS") THEN FLUSCW = COEFF * NORM ! Na-24 mass-specific activity (Bq/g) following 10 y ! irradiation and 12 h cooling time ELSEIF (SCORNAM(1:6) .EO. "Na24AC") THEN FLUSCW = COEFF * NORM * & (ONEONE - EXP(-LAMBDA * 3.15D+08)) * & EXP(-LAMBDA * (1.2D+01 * 3.6D+03)) ELSE FLUSCW = COEFF ENDIF ! If the particle is not a neutron (but scoring name matches), ! apply zero weighting ELSE FLUSCW = ZERZER RETURN ENDIF

IF (SCORNAM(1:5) .EQ. "Na24A") THEN

Activation – FLUSCW based methods

Expected activity of Na-24 (10y irradiation 1.0E+08 p/s - 12 h cooling time)

Neutron induced component only

Activation – FLUSCW based methods

General concept:

- 1. Precompute factors from fluence to radiological hazard factor (e.g. clearance limits)
- 2. Apply during transport via FLUSCW

CMS Experiment – Clearance of future End-cap calorimeters for two different stainless steel compositions

References:

R. Froeschl. A method for radiological characterization based on fluence conversion coefficients http://dx.doi.org/10.1088/1742-6596/1046/1/012006 (https://cds.cern.ch/record/2636326?In=en)

D. Bozzato, R. Froeschl. The Fluence Conversion Coefficients method : applications to radiological characterizatio the FLUKA and PHITS codes. CERN EDMS 2404506 (<u>https://cds.cern.ch/record/2730147?ln=en</u>)

Figure 5: FLUKA simulation of multiples of Swiss clearance limits (LL_{tot}) for different stainless steel 304L compositions for CMS HGCal at 30 years from end of irradiation (0.1% Co top; 0.3% Co bottom): r is the radial distance from the beam line, Ζ the longitudinal distance from the interaction point of the colliding beams.

Plots from: D. Bozzato, R. Froeschl, V. Kouskoura, "Operational radiation protection challenges for the LHC experiments". IRPA 2022. Radiation Protection Dosimetry (2023). [Accepted for publication].

FLUKA

Radiation Protection calculations

Activation of gases and fluids

- Gases and fluids often are non-stationary materials
 - Forced flow (circuits)
 - Natural convection and diffusion
- Standard concept for assessments
 - Scoring production yields
 - production yields directly with RESNCULE (no association with DCYSCORE) or
 - Fluence (USRTRACK) + off-line weighting with radionuclide production cross-sections (see before)
 - Build-up and decay taking characteristics of circuits into account
 - Cossairt [Fermilab Report TM-1834] (Sec. 8.2.2)
 - Build-up and decay with effective half-life (in simple case)
 - Correction at the end from effective Bq to physical Bq
 - Compartment models in more complex cases

Summary

- FLUKA features cover all standard domains of Radiation Protection assessments
 - External exposure
 - · Prompt and residual radiation
 - Latest ICRP 116 conversion coefficients available
 - Activation
 - Access to full radionuclide inventories
 - Build-up during beam operation and cool-down available
- All based on very well benchmarked FLUKA physics models and data
- FLUKA user routines structure allows customization to meet advanced needs
 - Weighting of fluences or radionuclide-specific activities
 - Clearance, transport, radioactive waste pathways

Summary of main input cards

RADDECAY

requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

DCYTIMES

definition of decay (cooling) times

DCYSCORE

associates scoring detectors (radionuclides, fluence, dose equivalent) with different cooling times

Summary of main input cards

AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

RESNUCLE

allows to score residual nuclei production or activity on a region basis

PHYSICS

switch to activate the evaporation of heavy fragments (up to A=24) and the simulation of coalescence

Benchmarks - Selection

CERF Benchmark experiment

Irradiation of samples of different materials to the stray radiation field created by the interaction of a 120 GeV positively charged hadron beam in a copper target

Reference: M. Brugger, S. Roesler, et al., Nuclear Instruments and Methods A 562 (2006) 814-818

Isotope	Copper	Iron	Titanium	Stainless	s Steel	Aluminum	Concrete	
⁷ Be 53.29d	1.47 ± 0.19 M	1.65 ± 0.22	1.50 ± 0.19	0.98 ± 0.24 M	C,N	0.71 ± 0.09 AI	1.17 ± 0.14 O, C	
	0.84 ± 0.25	0.90 ± 0.15						
²² Na 2.60y	0.72 ± 0.11	0.70 ± 0.13 M	0.85 ± 0.11			0.76 ± 0.07 AI	0.86 ± 0.09 Ca,(\$	Si,Mg)
²⁴ Na 14.96h	0.42 ± 0.03	0.48 ± 0.02	0.63 ± 0.02	0.37 ± 0.02	Fe,(Cr,Si)	0.81 ± 0.03 Al,Mg	0.62 ± 0.02 Ca,(\$	Si,Al)
²⁷ Mg 9.46m			0.79 ± 0.14 M			1.52 ± 0.25 Al,Mg		
²⁸ Mg 20.91h	0.25 ± 0.04 -	0.23 ± 0.03 -	0.31 ± 0.02 -	0.29 ± 0.10 M-	- Fe,Ni,Si)		0.29 ± 0.02 - Ca,(\$	Si)
²⁸ AI 2.24m	0.25 ± 0.03 -	0.21 ± 0.02 -	0.31 ± 0.02 -	0.29 ± 0.10 M-	- Fe,Ni,Si)		0.29 ± 0.03 - Ca,(\$	Si)
²⁹ AI 6.56m			0.93 ± 0.25 M					
³⁸ S 2.84h			0.60 ± 0.12 -					
^{m34} Cl 32.00m		0.91 ± 0.19 M	1.19 ± 0.16	0.77 ± 0.15	Fe,Cr,(Mn)		1.25 ± 0.07 Ca	
³⁸ CI 37.24m		0.61 ± 0.08	0.60 ± 0.01	0.58 ± 0.07	Fe,Cr,(Mn)			
³⁹ Cl 55.60m		0.64 ± 0.11 M	0.73 ± 0.08	0.66 ± 0.12	Fe,Cr,(Mn)			
⁴¹ Ar 1.82h	0.39 ± 0.06	0.46 ± 0.05	0.47 ± 0.04 -	0.38 ± 0.05	Fe,Cr,(Mn)		0.98 ± 0.14 Ca	
³⁸ K 7.64m							1.76 ± 0.20 - Ca	
⁴² K 12.36h	0.66 ± 0.10	0.83 ± 0.06	0.95 ± 0.05	0.76 ± 0.09	Fe,Cr,(Mn)		1.21 ± 0.08 Ca	
⁴³ K 22.30h	0.81 ± 0.10 -	0.77 ± 0.05	0.85 ± 0.03	0.74 ± 0.04	Fe,Cr,(Mn)		1.16 ± 0.05 Ca	
⁴⁴ K 22.13m								
⁴⁵ K 17.30m								
4'Ca 4.54d	0.59 ± 0.16	0.56 ± 0.17 M	0.73 ± 0.12	0.51 ± 0.15 M	Fe,Cr,(Mn)		0.79 ± 0.12 Ca	
⁴³ Sc 3.89h	0.40 ± 0.07 -	1.01 ± 0.14	1.28 ± 0.28 -	0.93 ± 0.15	Fe,Cr,(Mn)			
⁴⁴ Sc 3.93h	0.89 ± 0.07	1.06 ± 0.06	0.88 ± 0.05	0.96 ± 0.08	Fe,Cr,(Mn)	·	0.83 ± 0.06 Fe,(T	ʻi)
^{m44} Sc 58.60h	0.95 ± 0.12	1.20 ± 0.09	2.13 ± 0.12	1.24 ± 0.09	Fe,Cr,(Mn)	1.08 ± 0.17 Fe,Mn	1.67 ± 0.22 Fe,(T	i)
⁴⁶ Sc 83.79d	0.81 ± 0.07	0.86 ± 0.07	0.93 ± 0.08	0.89 ± 0.08	Fe,Cr,(Mn)	0.79 ± 0.18 Mn,(Ti,Fe)	0.88 ± 0.10 Fe,(T	ʻi)
4'Sc 80.28h	1.09 ± 0.14	1.17 ± 0.10 -	0.87 ± 0.07	1.06 ± 0.09	Fe,Cr,(Mn)	1.04 ± 0.15 Mn, (Ti, Fe)	1.00 ± 0.09 Fe,Ti	,(Ca)
⁴⁸ Sc 43.67h	1.39 ± 0.16	1.47 ± 0.10	1.10 ± 0.04	1.42 ± 0.08	Fe,Cr,(Mn)		1.36 ± 0.25 Fe,Ti	i,(Ca)
⁴⁸ V 15.97d	1.16 ± 0.08	1.45 ± 0.06	1.11 ± 0.07	1.44 ± 0.11	Fe,Cr,(Mn)	1.07 ± 0.13 Fe,Mn	1.63 ± 0.16 Fe	
⁴⁰ Cr 21.56h	0.92 ± 0.14	0.97 ± 0.07		1.02 ± 0.08	Fe,(Cr)		1.06 ± 0.23 M Fe	
⁴⁹ Cr 42.30m	1.00 ± 0.22 M	1.24 ± 0.12 -		1.06 ± 0.12	Fe,(Cr)			
³¹ Cr 27.70d	1.06 ± 0.13	1.15 ± 0.12	0.64 ± 0.24 M	1.24 ± 0.16	Fe,Cr	0.86 ± 0.16 Fe,Mn	1.33 ± 0.22 Fe	
⁵² Mn 5.59d	0.68 ± 0.05	1.15 ± 0.04		1.09 ± 0.03	Fe,(Mn)	0.88 ± 0.07 Fe,Mn	1.39 ± 0.07 Fe	
^{III32} Min 21.10m	1.68 ± 0.35	1.24 ± 0.09		1.12 ± 0.10	Fe,(Mn)		1.75 ± 0.79 M Fe	
⁵⁴ Mn 312.12d	1.13 ± 0.12	1.01 ± 0.10		1.08 ± 0.11	Fe,(Mn)	0.96 ± 0.12 Mn, Fe	1.06 ± 0.13 Fe	
³⁸ Min 2.58h	0.81 ± 0.06	0.99 ± 0.05		1.33 ± 0.10	Fe	1.53 ± 0.25 Mn	1.03 ± 0.25 Mn,F	e
⁵² Fe 8.28h		1.09 ± 0.13		0.99 ± 0.19 M	Fe,(Mn)			
⁵⁵ Fe 8.51m								
⁵⁵ Fe 44.50d	0.82 ± 0.09							
°° Co 17.53h	0.66 ± 0.09	0.76 ± 0.04		1.03 ± 0.05	Fe,Ni			
5600	4.04 . 0.00	1.13 ± 0.10		107.011				
Co 77.27d	1.04 ± 0.08	1.15 ± 0.10		1.37 ± 0.11	⊢e,Ni		0.80 ± 0.20 M Fe	
57.00.074.70	0.05 . 0.00	1.79 ± 0.15		1 10 1 0 10	NI			
⁵⁸ Co 70.00	0.85 ± 0.09	0.38 ± 0.09 M		1.16 ± 0.13	NI NI	0.66 ± 0.24 M Cu,Zn,Ni		
60 Co 5 07	0.91 ± 0.09	0.31 ± 0.08 M		0.98 ± 0.10	INI	0.82 ± 0.19 Cu,Zn,Ni		
61 Co 00.00	0.90 ± 0.08							
62 Co 00.00m	0.08 ± 0.08							
57 Ni 25 604	0.76 + 0.11			1 44 + 0.07	NI			
⁶⁵ Ni 35.60h	0.76 ± 0.11			1.44 ± 0.07	INI			
⁶⁰ Cu 22.52 <i>n</i>	1.40 ± 0.29							
⁶¹ Cu 23.70m	0.78 ± 0.08	┨────┤──						
⁶⁴ Cu 40.70	0.87 ± 0.25							
62 70 0 404	0.63 ± 0.10							
⁶³ 7n 29.47	1.05 ± 0.23							
⁶⁵ 7n 04400 /	0.62 + 0.02							
2 11 244.26d	0.62 ± 0.08							
	0.97 ± 0.20							

R = Ratio FLUKA/Exp

0.8 < R < 1.2 0.8 < R ± Error < 1.2 Exp/MDA < 1

R + Error < 0.8 or R – Error > 1.2

Reference:

M. Brugger, S. Roesler *et al.*, Nuclear Instruments and Methods A 562 (2006) 814-818

CERF Benchmark experiment - Results

Dose rate as function of cooling time for different distances between sample and detector

Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

CERF Benchmark experiment - Results

Dose rate as function of cooling time for different distances between sample and detector

Reference: M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

T. Oyama et al. - Published in: Nucl.Instrum.Meth.A 990 (2021) 164977 https://doi.org/10.1016/j.nima.2020.164977

Measurements of secondary-particle emissions from copper target bombarded with 24-GeV/c protons

PHITS 3.20 FLUKA v4-0.0

Measurements and Monte Carlo simulations of high-energy neutron streaming through the access maze using activation detectors at 24 GeV/c proton beam facility of CERN/CHARM

FLUKA – GW

Measurement and calculation of thermal neutrons induced by the 24 MCNP4C-ENDF/B-VI GeV/c/c proton bombardment of a thick copper target

Low energy neutrons for Ar 41 predictions

Gold foils at 3 heights

- Bare
- Cd coated

Benchmark Between Measured and Simulated Radiation Level Data at the Mixed-Field CHARM Facility at CERN

